You are using an outdated browser. Please upgrade your browser to improve your experience and security.

EEtimes

  • PERSPECTIVES
  • Military & Aerospace
  • AI & Big Data
  • Power Management
  • Industrial Control & Automation
  • Programmable Logic
  • Prototyping
  • Test & Measurement
  • Wireless & Networking
  • Silicon Grapevine
  • Wine Down Friday
  • Education Link
  • EETimes University
  • Tech Papers
  • Special Projects

RF Basics: Radio Propagation

Radio wave propagation.

It is fitting in a book about wireless communication to look at the phenomena that lets us transfer information from one point to another without any physical medium—the propagation of radio waves. If you want to design an efficient radio communication system, even for operation over relatively short distances, you should understand the behavior of the wireless channel in the various surroundings where this communication is to take place. While the use of “brute force” increasing transmission power could overcome inordinate path losses, limitations imposed on design by required battery life, or by regulatory authorities, make it imperative to develop and deploy short-range radio systems using solutions that a knowledge of radio propagation can give.

The overall behavior of radio waves is described by Maxwell’s equations. In 1873, the British physicist James Clerk Maxwell published his Treatise on Electricity and Magnetism in which he presented a set of equations that describe the nature of electromagnetic fields in terms of space and time. Heinrich Rudolph Hertz performed experiments to confirm Maxwell’s theory, which led to the development of wireless telegraph and radio. Maxwell’s equations form the basis for describing the propagation of radio waves in space, as well as the nature of varying electric and magnetic fields in conducting and insulating materials, and the flow of waves in waveguides.

From them, you can derive the skin effect equation and the electric and magnetic field relationships very close to antennas of all kinds. A number of computer programs on the market, based on the solution of Maxwell’s equations, help in the design of antennas, anticipate electromagnetic radiation problems from circuit board layouts , calculate the effectiveness of shielding, and perform accurate simulation of ultra-high-frequency and microwave circuits. While you don’t have to be an expert in Maxwell’s equations to use these programs (you do in order to write them!), having some familiarity with the equations may take the mystery out of the operation of the software and give an appreciation for its range of application and limitations.

The Four Types of Radio Wave Propagation

What are the four types of radio wave propagation? Radio waves can propagate from transmitter to receiver in four ways: through ground waves, sky waves, free space waves, and open field waves. Ground waves exist only for vertical polarization, produced by vertical antennas, when the transmitting and receiving antennas are close to the surface of the earth. The transmitted radiation induces currents in the earth, and the waves travel over the earth’s surface, being attenuated according to the energy absorbed by the conducting earth. The reason that horizontal antennas are not effective for ground wave propagation is that the horizontal electric field that they create is short circuited by the earth.

Engineering Connector Considerations for Robotic Applications 

Ground wave propagation is dominant only at relatively low frequencies, up to a few MHz, so it needn’t concern us here. Sky wave propagation is dependent on reflection from the ionosphere, a region of rarified air high above the earth’s surface that is ionized by sunlight (primarily ultraviolet radiation).

The ionosphere is responsible for long-distance communication in the high-frequency bands between 3 and 30 MHz. It is very dependent on time of day, season, longitude on the earth, and the multiyear cyclic production of sunspots on the sun. It makes possible long-range communication using very low power transmitters. Most short-range communication applications that we deal with in this chapter use VHF, UHF, and microwave bands, generally above 40 MHz. There are times when ionospheric reflection occurs at the low end of this range, and then sky wave propagation can be responsible for interference from signals originating hundreds of kilometers away. However, in general, sky wave propagation does not affect the short-range radio applications that we are interested in.

The most important propagation mechanism for short-range communication on the VHF and UHF bands is that which occurs in an open field, where the received signal is a vector sum of a direct line-of-sight signal and a signal from the same source that is reflected off the earth. Later we discuss the relationship between signal strength and range in line-of-sight and open field topographies.

The range of line-of-sight signals, when there are no reflections from the earth or ionosphere, is a function of the dispersion of the waves from the transmitter antenna. In this free-space case the signal strength decreases in inverse proportion to the distance away from the transmitter antenna. When the radiated power is known, the field strength is given by equation (5.1):

Range can be calculated on this basis at high UHF and microwave frequencies when high-gain antennas are used, located many wavelengths above the ground. Signal strength between the earth and a satellite, and between satellites, also follows the inverse distance law, but this case isn’t in the category of short-range communication! At microwave frequencies, signal strength is also reduced by atmospheric absorption caused by water vapor and other gases that constitute the air.

Open Field Propagation

Although the formulas in the previous section are useful in some circumstances, the actual range of a VHF or UHF signal is affected by reflections from the ground and surrounding objects. The path lengths of the reflected signals differ from that of the line-of-sight signal, so the receiver sees a combined signal with components having different amplitudes and phases.

The reflection causes a phase reversal. A reflected signal having a path length exceeding the line-of-sight distance by exactly the signal wavelength or a multiple of it will almost cancel completely the desired signal (“almost” because its amplitude will be slightly less than the direct signal amplitude). On the other hand, if the path length of the reflected signal differs exactly by an odd multiple of half the wavelength, the total signal will be strengthened by “almost” two times the free space direct signal.

In an open field with fl at terrain there will be no reflections except the unavoidable one from the ground. It is instructive and useful to examine in depth the field strength versus distance in this case. The mathematical details are given in the Mathcad worksheet “Open Field Range.”

In Figure 5.1 we see transmitter and receiver antennas separated by distance d and situated at heights h 1 and h 2 . Using trigonometry, we can find the line of sight and reflected signal path lengths d 1 and d 2 . Just as in optics, the angle of incidence equals the angle of reflection θ. We get the relative strength of the direct signal and reflected signal using the inverse path length relationship. If the ground were a perfect mirror, the relative reflected signal strength would exactly equal the inverse of d 2 . In this case, the reflected signal phase would shift 180 degrees at the point of reflection. However, the ground is not a perfect reflector. Its characteristics as a reflector depend on its conductivity, permittivity, the polarization of the signal, and its angle of incidence.

5.1. Open field signal paths In the Mathcad worksheet we have accounted for polarization, angle of incidence, and permittivity to find the reflection coefficient, which approaches -1 as the distance from the transmitter increases. The signals reaching the receiver are represented as complex numbers, since they have both phase and amplitude. The phase is found by subtracting the largest interval of whole wavelength multiples from the total path length and multiplying the remaining fraction of a wavelength by 2π radians, or 360 degrees.

Figure 5.2 gives a plot of relative open field signal strength versus distance using the following parameters : Polarity: horizontal Frequency: 300 MHz Antenna heights: both 3 meters Relative ground permittivity: 15

5.2. Field strength versus range at 300 MHz Also shown is a plot of free space field strength versus distance (dotted line). In both plots, signal strength is referenced to the free space field strength at a range of 3 meters. Notice in Figure 5.2 that, up to a range of around 50 meters, there are several sharp depressions of field strength, but the signal strength is mostly higher than it would be in free space. Beyond 100 meters, signal strength decreases more rapidly than for the free space model. Whereas there is an inverse distance law for free space, in the open field beyond 100 meters (for these parameters) the signal strength follows an inverse square law. Increasing the antenna heights extends the distance at which the inverse square law starts to take effect. This distance, dm, can be approximated by

Part 2 will cover Multipath Phenomena Part 3 will cover Diversity Techniques

References Gibson, J. D. (ed.), The Mobile Communications Handbook, CRC Press, Inc., 1996. Rappaport, T. S., Wireless Communications, Principles and Practice, Prentice Hall, Upper Saddle River, NJ, 1996. Spix, G. J., “Maxwell’s Electromagnetic Field Equations,” unpublished tutorial, copyright 1995 (http://www.connectos.com/spix/rd/gj/nme/maxwell.htm).

Related Articles

  • Low Latency Radio System Design Considerations
  • John Hays Hammond, Jr. – Father of Radio Control
  • James Clerk Maxwell—was he the founder of Electrical Engineering?
  • Paper: Pushing the Envelope of Wireless Communications
  • All RF Articles

Copyright: Printed with permission from Newnes, a division of Elsevier. Copyright 2008. “RF & Wireless Technologies” by Bruce A. Fette. For more information about this title and other similar books, please visit www.newnespress.com.

Share this:

Leave a reply cancel reply.

You must Register or Login to post a comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

can radio waves travel through ground

RF ENGINEER NETWORK

RF Basics: Radio Propagation

can radio waves travel through ground

It is fitting in a book about wireless communication to look at the phenomena that lets us transfer information from one point to another without any physical medium—the propagation of radio waves. If you want to design an efficient radio communication system, even for operation over relatively short distances, you should understand the behavior of the  wireless  channel in the various surroundings where this communication is to take place. While the use of “brute force” —increasing transmission power—could overcome inordinate path losses, limitations imposed on design by required battery life, or by regulatory authorities, make it imperative to develop and deploy short-range radio systems using solutions that a knowledge of radio propagation can give.

The overall behavior of radio waves is described by Maxwell’s equations. In 1873, the British physicist James Clerk Maxwell published his  Treatise on Electricity and Magnetism  in which he presented a set of equations that describe the nature of electromagnetic fields in terms of space and time. Heinrich Rudolph Hertz performed experiments to confirm Maxwell’s theory, which led to the development of wireless telegraph and radio. Maxwell’s equations form the basis for describing the propagation of radio waves in space, as well as the nature of varying electric and magnetic fields in conducting and insulating materials, and the flow of waves in waveguides.

From them, you can derive the skin effect equation and the electric and magnetic field relationships very close to antennas of all kinds. A number of computer programs on the market, based on the solution of Maxwell’s equations, help in the design of antennas, anticipate electromagnetic radiation problems from  circuit  board layouts, calculate the effectiveness of shielding, and perform accurate simulation of ultra-high-frequency and microwave circuits. While you don’t have to be an expert in Maxwell’s equations to use these programs (you do in order to write them!), having some familiarity with the equations may take the mystery out of the operation of the software and give an appreciation for its range of application and limitations.

Mechanisms of Radio Wave Propagation Radio waves can propagate from transmitter to receiver in four ways: through ground waves, sky waves, free space waves, and open field waves. Ground waves exist only for vertical polarization, produced by vertical antennas, when the transmitting and receiving antennas are close to the surface of the earth. The transmitted radiation induces currents in the earth, and the waves travel over the earth’s surface, being attenuated according to the energy absorbed by the conducting earth. The reason that horizontal antennas are not effective for ground wave propagation is that the horizontal electric field that they create is short circuited by the earth.

Ground wave propagation is dominant only at relatively low frequencies, up to a few MHz, so it needn’t concern us here. Sky wave propagation is dependent on reflection from the ionosphere, a region of rarified air high above the earth’s surface that is ionized by sunlight (primarily ultraviolet radiation).

The ionosphere is responsible for long-distance communication in the high-frequency bands between 3 and 30 MHz. It is very dependent on time of day, season, longitude on the earth, and the multiyear cyclic production of sunspots on the sun. It makes possible long-range communication using very low power transmitters. Most short-range communication applications that we deal with in this chapter use VHF, UHF, and microwave bands, generally above 40 MHz. There are times when ionospheric reflection occurs at the low end of this range, and then sky wave propagation can be responsible for interference from signals originating hundreds of kilometers away. However, in general, sky wave propagation does not affect the short-range radio applications that we are interested in.

The most important propagation mechanism for short-range communication on the VHF and UHF bands is that which occurs in an open field, where the received signal is a vector sum of a direct line-of-sight signal and a signal from the same source that is reflected off the earth. Later we discuss the relationship between signal strength and range in line-of-sight and open field topographies.

The range of line-of-sight signals, when there are no reflections from the earth or ionosphere, is a function of the dispersion of the waves from the transmitter antenna. In this free-space case the signal strength decreases in inverse proportion to the distance away from the transmitter antenna. When the radiated power is known, the field strength is given by equation (5.1):

where P t  is the transmitted power, G t  is the antenna gain, and d is the distance. When P t  is in watts and  d  is in meters,  E  is volts/meter. To find the power at the receiver (P r ) when the power into the transmitter antenna is known, use (5.2):

G t  and G r  are the transmitter and receiver antenna gains, and λ is the wavelength.

Range can be calculated on this basis at high UHF and microwave frequencies when high-gain antennas are used, located many wavelengths above the ground. Signal strength between the earth and a satellite, and between satellites, also follows the inverse distance law, but this case isn’t in the category of short-range communication! At microwave frequencies, signal strength is also reduced by atmospheric absorption caused by water vapor and other gases that constitute the air.

Open Field Propagation Although the formulas in the previous section are useful in some circumstances, the actual range of a VHF or UHF signal is affected by reflections from the ground and surrounding objects. The path lengths of the reflected signals differ from that of the line-of-sight signal, so the receiver sees a combined signal with components having different amplitudes and phases.

The reflection causes a phase reversal. A reflected signal having a path length exceeding the line-of-sight distance by exactly the signal wavelength or a multiple of it will almost cancel completely the desired signal (“almost” because its amplitude will be slightly less than the direct signal amplitude). On the other hand, if the path length of the reflected signal differs exactly by an odd multiple of half the wavelength, the total signal will be strengthened by “almost” two times the free space direct signal.

In an open field with fl at terrain there will be no reflections except the unavoidable one from the ground. It is instructive and useful to examine in depth the field strength versus distance in this case. The mathematical details are given in the Mathcad worksheet “Open Field Range.”

In  Figure 5.1  we see transmitter and receiver antennas separated by distance  d  and situated at heights h 1  and h 2 . Using trigonometry, we can find the line of sight and reflected signal path lengths d 1  and d 2 . Just as in optics, the angle of incidence equals the angle of reflection θ. We get the relative strength of the direct signal and reflected signal using the inverse path length relationship. If the ground were a perfect mirror, the relative reflected signal strength would exactly equal the inverse of d 2 . In this case, the reflected signal phase would shift 180 degrees at the point of reflection. However, the ground is not a perfect reflector. Its characteristics as a reflector depend on its conductivity, permittivity, the polarization of the signal, and its angle of incidence.

5.1. Open field signal paths

In the Mathcad worksheet we have accounted for polarization, angle of incidence, and permittivity to find the reflection coefficient, which approaches -1 as the distance from the transmitter increases. The signals reaching the receiver are represented as complex numbers, since they have both phase and amplitude. The phase is found by subtracting the largest interval of whole wavelength multiples from the total path length and multiplying the remaining fraction of a wavelength by 2π radians, or 360 degrees.

Figure 5.2  gives a plot of relative open field signal strength versus distance using the following parameters : Polarity: horizontal Frequency: 300 MHz Antenna heights: both 3 meters Relative ground permittivity: 15

5.2. Field strength versus range at 300 MHz

Also shown is a plot of free space field strength versus distance (dotted line). In both plots, signal strength is referenced to the free space field strength at a range of 3 meters. Notice in Figure 5.2 that, up to a range of around 50 meters, there are several sharp depressions of field strength, but the signal strength is mostly higher than it would be in free space. Beyond 100 meters, signal strength decreases more rapidly than for the free space model. Whereas there is an inverse distance law for free space, in the open field beyond 100 meters (for these parameters) the signal strength follows an inverse square law. Increasing the antenna heights extends the distance at which the inverse square law starts to take effect. This distance, dm, can be approximated by

where h 1  and h 2  are the transmitting and receiving antenna heights above ground and λ is the wavelength, all in the same units as the distance d m . In plotting Figure 5.2, we assumed horizontal polarization. Both antenna heights, h 1  and h 2 , are 3 meters. When vertical polarization is used, the extreme local variations of signal strengths up to around 50 meters are reduced because the ground reflection coefficient is less at larger reflection angles. However, for both polarizations, the inverse square law comes into effect at approximately the same distance. This distance in Figure 5.2 where λ is 1 meter is, from equation (5.3): d m  _ (12 _ 3 _ 3)/ λ _ 108 meters. In Figure 5.2 we see that this is approximately the distance where the open-field field strength falls below the free-space field strength.

Part 2  will cover Multipath Phenomena Part 3 will cover Diversity Techniques

References Gibson, J. D. (ed.), The Mobile  Communications  Handbook, CRC Press, Inc., 1996. Rappaport, T. S., Wireless Communications, Principles and Practice, Prentice Hall, Upper Saddle River, NJ, 1996. Spix, G. J., “Maxwell’s Electromagnetic Field Equations,” unpublished tutorial, copyright 1995 (http://www.connectos.com/spix/rd/gj/nme/maxwell.htm).

Leave a Comment

You must be logged in to post a comment.

Malcare WordPress Security

NASA Logo

Radio Waves

Radio wave frequency

WHAT ARE RADIO WAVES?

An old photograph of Karl Jansky standing in front of his radio telescope.

Radio waves have the longest wavelengths in the electromagnetic spectrum. They range from the length of a football to larger than our planet. Heinrich Hertz proved the existence of radio waves in the late 1880s. He used a spark gap attached to an induction coil and a separate spark gap on a receiving antenna. When waves created by the sparks of the coil transmitter were picked up by the receiving antenna, sparks would jump its gap as well. Hertz showed in his experiments that these signals possessed all the properties of electromagnetic waves.

You can tune a radio to a specific wavelength—or frequency—and listen to your favorite music. The radio "receives" these electromagnetic radio waves and converts them to mechanical vibrations in the speaker to create the sound waves you can hear.

RADIO EMISSIONS IN THE SOLAR SYSTEM

Astronomical objects that have a changing magnetic field can produce radio waves. The radio astronomy instrument called WAVES on the WIND spacecraft recorded a day of bursts of radio waves from the Sun's corona and planets in our solar system.

Data pictured below show emissions from a variety of sources including radio bursts from the Sun, the Earth, and even from Jupiter's ionosphere whose wavelengths measure about fifteen meters in length. The far right of this graph shows radio bursts from the Sun caused by electrons that have been ejected into space during solar flares moving at 20% of the speed of light.

A graph showing the frequency of radio emissions over a 24 hour period. The frequencies over 1000 kHz are those originating from the Sun. Frequency emissions between 600 and 1000 kHz are from Jupiter while the Earth produces frequencies between 200 and 400.

RADIO TELESCOPES

Radio telescopes look toward the heavens to view planets, comets, giant clouds of gas and dust, stars, and galaxies. By studying the radio waves originating from these sources, astronomers can learn about their composition, structure, and motion. Radio astronomy has the advantage that sunlight, clouds, and rain do not affect observations.

Since radio waves are longer than optical waves, radio telescopes are made differently than the telescopes used for visible light. Radio telescopes must be physically larger than an optical telescopes in order to make images of comparable resolution. But they can be made lighter with millions of small holes cut through the dish since the long radio waves are too big to "see" them. The Parkes radio telescope, which has a dish 64 meters wide, cannot yield an image any clearer than a small backyard optical telescope!

Photograph of a giant dish antenna.

A VERY LARGE TELESCOPE

In order to make a clearer, or higher resolution, radio image, radio astronomers often combine several smaller telescopes, or receiving dishes, into an array. Together, these dishes can act as one large telescope whose resolution is set by the maximum size of the area. The National Radio Astronomy Observatory's Very Large Array (VLA) radio telescope in New Mexico is one of the world's premier astronomical radio observatories. The VLA consists of 27 antennas arranged in a huge "Y" pattern up to 36 km across (roughly one-and-one-half times the size of Washington, DC).

The techniques used in radio astronomy at long wavelengths can sometimes be applied at the shorter end of the radio spectrum—the microwave portion. The VLA image below captured 21-centimeter energy emissions around a black hole in the lower right and magnetic field lines pulling gas around in the upper left.

An image showing a ball of bright white and red in the lower right with strands in red arching across the top and left indicating magnetic field lines.

THE RADIO SKY

If we were to look at the sky with a radio telescope tuned to 408 MHz, the sky would appear radically different from what we see in visible light. Instead of seeing point-like stars, we would see distant pulsars, star-forming regions, and supernova remnants would dominate the night sky.

Radio telescopes can also detect quasars. The term quasar is short for quasi-stellar radio source. The name comes from the fact that the first quasars identified emit mostly radio energy and look much like stars. Quasars are very energetic, with some emitting 1,000 times as much energy as the entire Milky Way. However, most quasars are blocked from view in visible light by dust in their surrounding galaxies.

A dark image with defined spots of blue in lower left, and green in upper right, with a spot of yellow in the center.

Astronomers identified the quasars with the help of radio data from the VLA radio telescope because many galaxies with quasars appear bright when viewed with radio telescopes. In the false-color image below, infrared data from the Spitzer space telescope is colored both blue and green, and radio data from the VLA telescope is shown in red. The quasar-bearing galaxy stands out in yellow because it emits both infrared and radio light.

Next: Microwaves

National Aeronautics and Space Administration, Science Mission Directorate. (2010). Radio Waves. Retrieved [insert date - e.g. August 10, 2016] , from NASA Science website: http://science.nasa.gov/ems/05_radiowaves

Science Mission Directorate. "Radio Waves" NASA Science . 2010. National Aeronautics and Space Administration. [insert date - e.g. 10 Aug. 2016] http://science.nasa.gov/ems/05_radiowaves

Discover More Topics From NASA

James Webb Space Telescope

The image is divided horizontally by an undulating line between a cloudscape forming a nebula along the bottom portion and a comparatively clear upper portion. Speckled across both portions is a starfield, showing innumerable stars of many sizes. The smallest of these are small, distant, and faint points of light. The largest of these appear larger, closer, brighter, and more fully resolved with 8-point diffraction spikes. The upper portion of the image is blueish, and has wispy translucent cloud-like streaks rising from the nebula below. The orangish cloudy formation in the bottom half varies in density and ranges from translucent to opaque. The stars vary in color, the majority of which have a blue or orange hue. The cloud-like structure of the nebula contains ridges, peaks, and valleys – an appearance very similar to a mountain range. Three long diffraction spikes from the top right edge of the image suggest the presence of a large star just out of view.

Perseverance Rover

can radio waves travel through ground

Parker Solar Probe

can radio waves travel through ground

Radio Waves

Radio waves are a type of electromagnetic radiation. A radio wave has a much longer wavelength than visible light. Humans use radio waves extensively for communications.

Black and white radio tower with clouds in Harrisonburg, VA on James Madison University's campus.

This radio tower has both rectangular and circular antennas to transmit and receive radio frequency energy.

Photo by Christina Telep on Unsplash

The wavelengths of radio waves range from a few millimeters (tenths of inches) to hundreds of kilometers (hundreds of miles). Visible light, for comparison, has wavelengths in the 400 to 700 nanometer range, about 5,000 times shorter than the shortest wavelength radio waves. Radio waves oscillate at frequencies between a few kilohertz (kHz or thousands of hertz) and a few terahertz (THz or 1012 hertz). "Far infrared" radiation borders radio waves along the electromagnetic spectrum  and has slightly higher energy and shorter wavelengths than radio waves.

Microwaves are short wavelength radio waves which we use for cooking and for communication. Microwaves have wavelengths between a few millimeters and tens of centimeters (tenths of inches to tens of inches).

Various frequencies of radio waves are used for television and FM and AM radio broadcasts, military communications, mobile phones, ham radio, wireless computer networks, and numerous other communications applications.

Most radio waves pass freely through Earth's atmosphere. However, some frequencies can be reflected or absorbed by the charged particles in the ionosphere .

© 2018 UCAR with portions adapted from Windows to the Universe (© 2005 NESTA)

  • Electromagnetic (EM) Spectrum

2 minute read

Radio Waves

Propagation of radio waves.

Radio waves travel by three different routes from their point of propagation to their point of detection. These three routes are through the troposphere, through the ground, and by reflection off the ionosphere. The first of these routes is the most direct. A radio wave generated and transmitted from point A may travel in a relatively straight line through the lower atmosphere to a second point, B, where its presence can be detected by a receiver. This "line of sight" propagation is similar to the transmission of a beam of light from one point to another on Earth's surface. And, as with light, this form of radio wave propagation is limited by the curvature of Earth's surface.

This description is, however, overly simplified. Radio waves are deflected in a number of ways as they move through the troposphere. For example, they may be reflected, refracted, or diffracted by air molecules through which they pass. As a consequence, radio waves can actually pass beyond Earth's optical horizon and, to an extent, follow Earth's curvature.

Line-of-sight transmission has taken on a new dimension with the invention of communications satellites. Today a radio wave can be aimed at an orbiting satellite traveling in the upper part of the atmosphere. That satellite can then retransmit the signal back to Earth's surface, where it can be picked up by a number of receiving stations. Communications satellites can be of two types. One, a passive satellite, simply provides a surface off which the radio wave can be reflected. The other type, an active satellite, picks up the signal received from Earth's surface, amplifies it, and then retransmits it to ground-based receiving stations.

Since radio waves are propagated in all directions from a transmitting antenna , some may reflect off the ground to the receiving antenna, where they can be detected. Such waves can also be transmitted along Earth's surface in a form known as surface waves. Radio waves whose transmission takes place in connection with Earth's surface may be modified because of changing ground conditions, such as irregularities in the surface or the amount of moisture in the ground.

Finally, radio waves can be transmitted by reflection from the ionosphere. When waves of frequencies up to about 25 megahertz (sometimes higher) are projected into the sky, they bounce off a region of the ionosphere known as the E layer. The E layer is a region of high electron density located about 50 mi (80 km) above Earth's surface. Some reflection occurs off the F layer of the ionosphere also, located about 120 mi (200 km) above Earth's surface. Radio waves reflected by the ionosphere are also known as sky waves.

Additional topics

  • Radio Waves - Transmission Of Radio Waves
  • Other Free Encyclopedias

Science Encyclopedia Science & Philosophy: Quantum electronics to Reasoning Radio Waves - Propagation Of Radio Waves, Transmission Of Radio Waves, Modulating A Sound Wave

  • Dogs Smell Cancer? – The Canine Nose Sniffs Out New Methods in Cancer Detection Technology
  • Engineering Cinema: The Evolution of the Motion Picture Camera
  • Shocking! – How Airplanes Defend Against Lightning
  • How GPS Revolutionized Navigation
  • Engineering a Masterpiece: The Science of Fresco Painting

USC Viterbi School of Engineering

USC Viterbi School of Engineering

Catch a Wave: Radio Waves and How They Work

About the Author: Andrew Schnickel

In Fall 2000, Andrew Schnickel was a Junior majoring in CECS who enjoyed running barefoot in the rain.

Introduction

can radio waves travel through ground

You are driving down the open road, not a care in the world. It’s a sunny summer day and you have the car windows down. Everything seems almost perfect, yet something is missing. You turn on the radio, tune it to your favorite station (see Fig. 1), and instantly the car fills with sound. Suddenly, everything feels right. Radio is something most of us take for granted. Have you ever stopped to consider how a radio works? How does a radio know which station to play? What is AM, what is FM, and how are the two different? Why does FM sound better, but AM can be heard farther away? You have probably experienced a time when finding a particular radio station has been difficult. There are many factors involved in finding and receiving stations, factors such as modulation, broadcasting power, time of day, and geographical location. The key to getting the most out of your radio is to understand how radio works and how engineering has played a part in the development of a device which most of us use everyday.

Radio Basics

Am and fm differences.

Two characteristics, amplitude and frequency (see Fig. 2), mark the difference between AM and FM radio. AM stands for amplitude modulation, which means the amplitude of the radio signal is used to encode information. FM denotes frequency modulation, which uses a change in frequency to encode information. From this you can see that both AM and FM radio use modulation to encode information. “Modulation is the variation of some property of the radio carrier in a manner that conveys information” [1].

Modulation Explained

Amplitude modulation (am), frequency modulation (fm), sound quality and performance, signal strength, frequency range, interference, broadcast range.

  • [1] J.J. Carr. “Elements of Electronic Communications.” Reston, Virginia: Reston Publishing Company, Inc., 1978.
  • [2] R.S. Carson. “Radio Communications Concepts: Analog.” New York: John Wiley & Sons, 1990.
  • [3] Editors and Engineers  The “Radio” Handbook.  Los Angeles: Editors and Engineers, 1942.
  • ← Minerva: A Pioneer in Everyday Robots
  • Fuel Injection →

Similar Posts

can radio waves travel through ground

Chemical Engineering Your Dinner

can radio waves travel through ground

Inside a Slot Machine

can radio waves travel through ground

Engineering a Smooth Ride: Creating the Perfect Ski Through Shaping and Vibration Damping

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Small Business Productivity, Tools and Tips – Android and iPhone Sync

What radio waves can travel through and what they cannot.

When Guglielmo Marconi began research into long-range radio in the late 19th century, the scientific community was skeptical. That he succeeded in transmitting radio signals more than 2000km met with much astonishment. What he had unwittingly done was discover the ionosphere, a layer in the atmosphere that is ionized to a degree by the sun’s ultraviolet rays. 

can radio waves travel through ground

This affects radio waves and reflects them to earth, which bounces them upwards again. This repeated sequence enables us to transmit radio waves around the world. So, if radio waves can’t penetrate the ionosphere, what else will hinder them? Let’s look at what radio waves consist of, and then we’ll talk about their ability or otherwise to pass through certain materials.

Radio Waves Explained 

Developments in radio technology have brought us a long way in the past 100 years and more, but how do radio waves work? Before Marconi’s discovery, scientists believed that radio signals could only travel a straight line, as they were known to do in free space. Hence, there was a necessity for tall towers from which to transmit signals. A 100m high tower, for example, could send a signal up to around 30km, the limit set by the curvature of the earth. Marconi showed that radio waves could be bent and bounced by the ionosphere.

Radio waves form a small part of what is known as the electromagnetic spectrum (EMS). This consists not just of radio waves but also other forms of electromagnetic radiation such as gamma rays, microwaves, visible light, and more. Radio waves have among the longest wavelengths on the EMS. Imagine a rope held between two people. Move the rope up and down at one end, and a waveform moves across the rope.

This is what a radio wave would look like if we could see it. The wavelength is the distance between two ‘peaks’ in the wave. We also have to consider the frequency, which the number of waves that pass a given point in a set time. This is vital to understand so that different transmissions do not interfere with each other. 

Television signals are radio waves, but they are broadcast in a different frequency range to the radio.

What has this to do with the materials that radio waves can and cannot pass through? Let’s look more closely at this. 

can radio waves travel through ground

What Can’t Radio Waves Pass-Through?

We’ve already seen that radio waves do not penetrate the ionosphere. We should explain that this refers to radio waves of up to 40MHz, the highest frequency bounced off the ionosphere. Why do radio waves bounce back?

As we mentioned, the ionosphere is partly ionized. 

This is because the UV light from the sun causes electrons to shake free from atoms, leaving a large proportion of free electrons hanging about in the ionosphere. When a radio wave hits the ionosphere, the energy created by the free electrons, as a result, causes the radio waves to be repelled or reflected. 

So, we know that radio waves up to 40MHz won’t pass through an ionized layer in the atmosphere. Remember that we explained the perceived limitations of radio transmissions before Marconi’s discovery. A line of sight was necessary, without obstructions, for successful transmission.

In some radio transmissions, interference can be caused by the waves being blocked by materials that they cannot penetrate. While radio waves can move through wood, bricks, and concrete to a certain extent, these materials can still cause interference. This is because radio waves meeting such objects can be reflected from buildings and other large structures, just like the ionosphere. This explains why the reception of radios and other radio frequency devices such as smartphones vary between locations.

For the record, as it covers a large bandwidth necessarily, television signals need to be above 40MHz so they cannot be bounced off the ionosphere, hence the tall towers in high locations used for TV transmissions. 

Radio waves will also be adversely affected by metal and water, which they cannot pass through. That is because water and metal are both electrical conductors. Like the ionosphere, metal and water contain many free electrons, which will vibrate when a radio wave hits the surface, and the wave will bounce back. 

To summarize, we now know that radio waves are affected by free electrons in electrical conductors such as metals and water and cannot pass through these materials. 

We have discovered that they can pass through non-conducting materials quite well but are losing propagation power with reflecting surfaces such as water, metal, and other materials. Furthermore, worldwide radio transmission is made possible by the radio waves being reflected by the ionosphere and the earth in a continuous sequence, allowing for transmissions to be made across great distances. 

share this!

August 17, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Scientists discover phenomenon impacting Earth's radiation belts

by Rod Boyce, University of Alaska Fairbanks

Scientists discover phenomenon impacting Earth's radiation belts

Two University of Alaska Fairbanks scientists have discovered a new type of "whistler," an electromagnetic wave that carries a substantial amount of lightning energy to the Earth's magnetosphere.

The research is published today in Science Advances .

Vikas Sonwalkar, a professor emeritus, and Amani Reddy, an assistant professor, discovered the new type of wave. The wave carries lightning energy, which enters the ionosphere at low latitudes, to the magnetosphere . The energy is reflected upward by the ionosphere's lower boundary, at about 55 miles altitude, in the opposite hemisphere.

It was previously believed, the authors write, that lightning energy entering the ionosphere at low latitudes remained trapped in the ionosphere and therefore was not reaching the radiation belts . The belts are two layers of charged particles surrounding the planet and held in place by Earth's magnetic field.

"We as a society are dependent on space technology ," Sonwalkar said. "Modern communication and navigation systems , satellites, and spacecraft with astronauts aboard encounter harmful energetic particles of the radiation belts, which can damage electronics and cause cancer.

"Having a better understanding of radiation belts and the variety of electromagnetic waves, including those originating in terrestrial lightning, that impact them is vital for human operations in space," he said.

Sonwalkar and Reddy's discovery is a type of whistler wave they call a "specularly reflected whistler." Whistlers produce a whistling sound when played through a speaker.

Lightning energy entering the ionosphere at higher latitudes reaches the magnetosphere as a different type of whistler called a magnetospherically reflected whistler, which undergoes one or more reflections within the magnetosphere.

The ionosphere is a layer of Earth's upper atmosphere characterized by a high concentration of ions and free electrons. It is ionized by solar radiation and cosmic rays , making it conductive and crucial for radio communication because it reflects and modifies radio waves.

Earth's magnetosphere is a region of space surrounding the planet and created by Earth's magnetic field. It provides a protective barrier that prevents most of the solar wind's particles from reaching the atmosphere and harming life and technology.

Sonwalkar and Reddy's research shows that both types of whistlers—specularly reflected whistlers and magnetospherically reflected whistlers—coexist in the magnetosphere.

In their research, the authors used plasma wave data from NASA's Van Allen Probes, which launched in 2012 and operated until 2019, and lightning data from the World Wide Lightning Detection Network.

They developed a wave propagation model that, when considering specularly reflected whistlers, showed the doubling of lightning energy reaching the magnetosphere.

Review of plasma wave data from the Van Allen Probes showed that specularly reflected whistlers are a common magnetospheric phenomenon.

The majority of lightning occurs at the low latitudes, which are tropical and subtropical regions prone to thunderstorm development.

"This implies that specularly reflected whistlers probably carry a greater part of lightning energy to the magnetosphere relative to that carried by magnetospherically reflected whistlers," Sonwalkar said.

The impact of lightning -generated whistler waves on radiation belt physics and their use in remote sensing of magnetospheric plasma have been researched since the 1950s.

Sonwalkar and Reddy are with the Department of Electrical and Computer Engineering in the UAF College of Engineering and Mines. Reddy is also affiliated with the UAF Geophysical Institute.

Sonwalkar and Reddy's research is supported by grants from the National Science Foundation and NASA EPSCoR, the Established Program to Stimulate Competitive Research.

Journal information: Science Advances

Provided by University of Alaska Fairbanks

Explore further

Feedback to editors

can radio waves travel through ground

Evidence stacks up for poisonous books containing toxic dyes

23 hours ago

can radio waves travel through ground

Researchers develop an instant version of trendy, golden turmeric milk

can radio waves travel through ground

Saturday Citations: Citizen scientists observe fast thing; controlling rat populations; clearing nanoplastic from water

Aug 17, 2024

can radio waves travel through ground

New AI tool captures how proteins behave in context

can radio waves travel through ground

Geophysicists find link between seismic waves called PKP precursors and strange anomalies in Earth's mantle

can radio waves travel through ground

New twist on synthesis technique promises sustainable manufacturing

can radio waves travel through ground

Researchers discover smarter way to recycle polyurethane

Aug 16, 2024

can radio waves travel through ground

DNA study challenges thinking on ancestry of people in Japan

can radio waves travel through ground

A visionary approach: How a team developed accessible maps for colorblind scientists

can radio waves travel through ground

New tool simplifies cell tracking data analysis

Relevant physicsforums posts, optimizing exposure times: balancing efficiency and image quality.

Aug 13, 2024

What Are the Mysterious Zig Zagging 'Stars' in the Night Sky?

Possible explanations for meteor like observations.

Aug 12, 2024

Solar Activity and Space Weather Update thread

Our beautiful universe - photos and videos, exploring the sun: amateur solar imaging techniques.

More from Astronomy and Astrophysics

Related Stories

can radio waves travel through ground

New study sheds light on how ultralow frequency radio waves and plasmas interact

Aug 14, 2018

can radio waves travel through ground

Fusion scientists find inspiration in atmospheric whistles

May 3, 2018

can radio waves travel through ground

Does lightning strike on Venus? Maybe not, study suggests

Oct 2, 2023

can radio waves travel through ground

The effects of solar flares on Earth's magnetosphere

Apr 23, 2021

can radio waves travel through ground

Research reveals the cause of diffuse aurora formation dominated by chorus waves

May 13, 2024

can radio waves travel through ground

When the solar wind hits Earth's magnetosphere, a surprising stillness ensues

Oct 6, 2021

Recommended for you

can radio waves travel through ground

Study of Earth's rotation history shows deceleration has been in a staircase pattern

can radio waves travel through ground

Scientists pinpoint dino-killing asteroid's origin: past Jupiter

can radio waves travel through ground

New research shows unprecedented atmospheric changes during May's geomagnetic superstorm

can radio waves travel through ground

Rocks collected on Mars hold key to water and perhaps life on the planet: Researchers urge bringing them back to Earth

Aug 14, 2024

can radio waves travel through ground

New massive eccentric brown dwarf discovered

can radio waves travel through ground

NASA's Perseverance rover to begin long climb up Martian crater rim

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Turns out you can transmit sound in a vacuum, just not very far

For the first time, researchers were able to transmit, or "tunnel," sound waves across extremely small distances between two crystals in a vacuum.

Sound waves overlaid on an image of outer space

For the first time, scientists have shown that sound can travel through the emptiness of a vacuum. However, the rule-breaking trick requires specific circumstances and can only be carried out over extremely small distances.

The iconic tagline of the 1979 sci-fi film "Alien" tells us that "in space no one can hear you scream." This was based on the fact that space is a vacuum, a region devoid of any particles. Sound waves travel by vibrating through the particles of a medium, such as air or water, from a source to a receiver. So in a vacuum, there is no travel medium. (Outer space is not actually a total vacuum because it does contain small amounts of gas, plasma and other particles. But this matter is surrounded by vast swathes of emptiness.)

But in a new study, published July 14 in the journal Communications Physics , researchers showed that sound can move through a vacuum. Unfortunately for space explorers being hunted by aliens, this does not extend to human screams.

In the new experiment, researchers transmitted, or "tunneled," sound waves across a vacuum between two zinc oxide crystals by transforming the vibrating waves into ripples within an electric field between the objects.

Related: Eerie sounds triggered by plasma waves hitting Earth's magnetic field captured in new NASA sound clip

A multicolor concept image of sound travelling between two crystals

A zinc oxide crystal is a piezoelectric material, which means that when force or heat is applied to it, the material produces an electrical charge. Therefore, when sound is applied to one of these crystals, it creates an electrical charge that disrupts nearby electric fields. If the crystal shares an electric field with another crystal, then the magnetic disruption can travel from one to the other across a vacuum. The disruptions mirror the frequency of the sound waves, so the receiving crystal can turn the disruption back into a sound on the other side of the vacuum.

However, the disruptions cannot travel a distance greater than the wavelength of a single sound wave. In theory, this works with any sound no matter how small the wavelength of that sound is, as long as the gap between the crystals is small enough. 

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

The method is not always reliable. In a large percentage of the experiments, the sound was not perfectly transmitted between the two crystals: parts of the wave were warped, or reflected, as it passed through the electric field, the researchers found. However, occasionally the piezoelectric crystals perfectly transmitted the entire sound wave.

— Why is space a vacuum?

— What would happen to the human body in the vacuum of space?

— What if the speed of sound were as fast as the speed of light?  

"In most cases the effect [sound transmitted] is small, but we also found situations, where the full energy of the wave jumps across the vacuum with 100 % efficiency, without any reflections," study co-author Ilari Maasilta , a material physicist at the University of Jyväskylä in Finland, said in a statement .

The finding could one day help develop microelectromechanical components, like those found in smartphones and other technology, the researchers said. 

Harry is a U.K.-based senior staff writer at Live Science. He studied marine biology at the University of Exeter before training to become a journalist. He covers a wide range of topics including space exploration, planetary science, space weather, climate change, animal behavior, evolution and paleontology. His feature on the upcoming solar maximum was shortlisted in the "top scoop" category at the National Council for the Training of Journalists (NCTJ) Awards for Excellence in 2023. 

The Higgs particle could break physics throughout the universe. Here's why it hasn't.

Huge cosmological mystery could be solved by wormholes, new study argues

'Golden spike' showing the moment Earth turned into a giant snowball discovered in ancient Scottish rocks

Most Popular

 alt=

  • 2 Pompeii victims died in 'extreme agony,' 2 newfound skeletons reveal
  • 3 Sweden reports 1st case of deadlier mpox outside Africa
  • 4 CRISPR could be used to treat UTIs, early trial hints
  • 5 Earth’s days were once 2 hours longer — and that may have triggered one of the biggest evolutionary explosions in history, study suggests

can radio waves travel through ground

ScienceDaily

Scientists discover phenomenon impacting Earth's radiation belts

Two University of Alaska Fairbanks scientists have discovered a new type of "whistler," an electromagnetic wave that carries a substantial amount of lightning energy to the Earth's magnetosphere.

The research is published in Science Advances.

Vikas Sonwalkar, a professor emeritus, and Amani Reddy, an assistant professor, discovered the new type of wave. The wave carries lightning energy, which enters the ionosphere at low latitudes, to the magnetosphere. The energy is reflected upward by the ionosphere's lower boundary, at about 55 miles altitude, in the opposite hemisphere.

It was previously believed, the authors write, that lightning energy entering the ionosphere at low latitudes remained trapped in the ionosphere and therefore was not reaching the radiation belts. The belts are two layers of charged particles surrounding the planet and held in place by Earth's magnetic field.

"We as a society are dependent on space technology," Sonwalkar said. "Modern communication and navigation systems, satellites, and spacecraft with astronauts aboard encounter harmful energetic particles of the radiation belts, which can damage electronics and cause cancer.

"Having a better understanding of radiation belts and the variety of electromagnetic waves, including those originating in terrestrial lightning, that impact them is vital for human operations in space," he said.

Sonwalkar and Reddy's discovery is a type of whistler wave they call a "specularly reflected whistler." Whistlers produc e a whistling sound when played through a speaker.

Lightning energy entering the ionosphere at higher latitudes reaches the magnetosphere as a different type of whistler called a magnetospherically reflected whistler, which undergoes one or more reflections within the magnetosphere.

The ionosphere is a layer of Earth's upper atmosphere characterized by a high concentration of ions and free electrons. It is ionized by solar radiation and cosmic rays, making it conductive and crucial for radio communication because it reflects and modifies radio waves.

Earth's magnetosphere is a region of space surrounding the planet and created by Earth's magnetic field. It provides a protective barrier that prevents most of the solar wind's particles from reaching the atmosphere and harming life and technology.

Sonwalkar and Reddy's research shows that both types of whistlers -- specularly reflected whistlers and magnetospherically reflected whistlers -- coexist in the magnetosphere.

In their research, the authors used plasma wave data from NASA's Van Allen Probes, which launched in 2012 and operated until 2019, and lightning data from the World Wide Lightning Detection Network.

They developed a wave propagation model that, when considering specularly reflected whistlers, showed the doubling of lightning energy reaching the magnetosphere.

Review of plasma wave data from the Van Allen Probes showed that specularly reflected whistlers are a common magnetospheric phenomenon.

A majority of lightning occurs at the low latitudes, which are tropical and subtropical regions prone to thunderstorm development.

"This implies that specularly reflected whistlers probably carry a greater part of lightning energy to the magnetosphere relative to that carried by magnetospherically reflected whistlers," Sonwalkar said.

The impact of lightning-generated whistler waves on radiation belt physics and their use in remote sensing of magnetospheric plasma have been researched since the 1950s.

  • Solar Energy
  • Energy Technology
  • Geomagnetic Storms
  • Severe Weather
  • Radiant energy
  • Ionizing radiation
  • Solar radiation
  • Seismic wave
  • Breaking wave
  • Introduction to quantum mechanics
  • Photoelectric effect

Story Source:

Materials provided by University of Alaska Fairbanks . Original written by Rod Boyce. Note: Content may be edited for style and length.

Journal Reference :

  • Vikas S. Sonwalkar, Amani Reddy. Specularly reflected whistler: A low-latitude channel to couple lightning energy to the magnetosphere . Science Advances , 2024; 10 (33) DOI: 10.1126/sciadv.ado2657

Cite This Page :

Explore More

  • Indigenous Dog Lineages in Colonial Period
  • Forecasting a Black Hole's Feeding Patterns
  • Rethinking the Dodo
  • Geomagnetic Superstorm: Unprecedented Changes
  • Asteroid That Sealed Dinosaurs' Fate
  • Underground ‘Rave’ a Sign Soil Is 'Happy'
  • Tiny Batteries for Powering Cell-Sized Robots
  • Brain Wiring Is Guided by Activity
  • Restoring Brain's Trash Disposal System
  • Zebrafish: Surprising Way to Regrow Spinal Cord

Trending Topics

Strange & offbeat.

IMAGES

  1. Can HF and VHF radio propagation overcome extreme weather?

    can radio waves travel through ground

  2. Electromagnetic radiation

    can radio waves travel through ground

  3. How Radio Waves Work?

    can radio waves travel through ground

  4. Radio Propagation

    can radio waves travel through ground

  5. Modes of Radio Wave Propagation Part 1: Ground / Surface Wave Travels Along Surface of the Earth

    can radio waves travel through ground

  6. PPT

    can radio waves travel through ground

COMMENTS

  1. Radio propagation

    Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. [1]: 26‑1 As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. [2]

  2. Electromagnetic radiation

    The range of the ground wave (up to 1,600 km [1,000 miles]) and the bending and reflection of the sky wave by the ionosphere depend on the frequency of the waves. Under normal ionospheric conditions 40 MHz is the highest-frequency radio wave that can be reflected from the ionosphere.

  3. Understanding Radio Waves: Nature and Properties

    This mode is influenced by the conductivity of the ground; waves can travel farther over sea water than over dry land or mountains. Ground waves comprise two components: the surface wave that attenuates as it follows the Earth's curvature, and the direct wave that travels straight from the transmitter to the receiver.

  4. Radio wave

    Radio waves were first predicted by the theory of electromagnetism proposed in 1867 by Scottish mathematical physicist James Clerk Maxwell. [3] His mathematical theory, now called Maxwell's equations, predicted that a coupled electric and magnetic field could travel through space as an "electromagnetic wave".Maxwell proposed that light consisted of electromagnetic waves of very short wavelength.

  5. RF Basics: Radio Wave (RF) Propagation

    What are the four types of radio wave propagation? Radio waves can propagate from transmitter to receiver in four ways: through ground waves, sky waves, free space waves, and open field waves. Ground waves exist only for vertical polarization, produced by vertical antennas, when the transmitting and receiving antennas are close to the surface ...

  6. Ground wave

    Ground wave is a mode of radio propagation that consists of currents traveling through the earth.Ground waves propagate parallel to and adjacent to the surface of the Earth, and are capable covering long distances by diffracting around the Earth's curvature. This radiation is also known as the Norton surface wave, or more properly the Norton ground wave, because ground waves in radio ...

  7. RF Basics: Radio Propagation

    Mechanisms of Radio Wave Propagation. Radio waves can propagate from transmitter to receiver in four ways: through ground waves, sky waves, free space waves, and open field waves. Ground waves exist only for vertical polarization, produced by vertical antennas, when the transmitting and receiving antennas are close to the surface of the earth.

  8. Radio Waves

    Radio waves have the longest wavelengths in the electromagnetic spectrum. They range from the length of a football to larger than our planet. ... Human Space Travel Research; Explore; ... But they can be made lighter with millions of small holes cut through the dish since the long radio waves are too big to "see" them. The Parkes radio ...

  9. Radio Waves

    Radio waves are a type of electromagnetic radiation. A radio wave has a much longer wavelength than visible light. Humans use radio waves extensively for communications. This radio tower has both rectangular and circular antennas to transmit and receive radio frequency energy. The wavelengths of radio waves range from a few millimeters (tenths ...

  10. Radio wave

    The wavelengths of radio waves range from thousands of metres to 30 cm. These correspond to frequencies as low as 3 Hz and as high as 1 gigahertz (10 9 Hz). Radio-wave communications signals travel through the air in a straight line, reflect off of clouds or layers of the ionosphere, or are relayed by satellites in space.

  11. The Effects of Earth's Upper Atmosphere on Radio Signals

    Low frequency radio waves do not travel very far through the atmosphere and are absorbed rather quickly. ... In these areas there are few electrons to reflect radio waves and thus lower frequency waves are able to reach the ground. As can be seen from the animations the night time and early morning hours are best for observations due to the ...

  12. Do radio waves travel around the Earth or through it?

    $\begingroup$ The atmosphere allows the radio waves to bounce off it, as does the ground, allowing the waves to travel. $\endgroup$ - jhobbie. Commented Jun 25, 2014 at 19:29. 1 ... Radio waves will not travel through the Earth. It's just too dense for that. Think of it this way: when you take an x-ray, you can see your skeleton in detail in ...

  13. Radio Waves

    A radio wave generated and transmitted from point A may travel in a relatively straight line through the lower atmosphere to a second point, B, where its presence can be detected by a receiver. ... such as irregularities in the surface or the amount of moisture in the ground. Finally, radio waves can be transmitted by reflection from the ...

  14. Catch a Wave: Radio Waves and How They Work

    Larger wavelength waves can travel farther because they can travel well through solid objects. FM radio waves on the other hand do not travel well through solid objects. This is the reason FM stations sometimes fade in and out when driving in mountainous areas. Another reason why AM radio waves can be heard far away is that they can be ...

  15. Propagation of Radio Waves: Ground Wave vs. Skywave

    Comparing Ground Wave and Skywave Propagation. Ground wave and skywave propagation represent two fundamental mechanisms through which radio waves travel, each with distinct characteristics, applications, and limitations. Understanding these differences is crucial for amateur radio operators to tailor their communication strategies effectively.

  16. How do radio waves physically "travel"?

    21 1 2. Radio waves are electromagnetic in nature. Recall that EM waves do not require medium for propagation. The continuously changing electric field of an EM wave generates continuously changing magnetic field and vice versa. This is a never ending phenomenon. - Mitchell. Jun 2, 2017 at 12:36.

  17. Block Radio Waves

    The remote control acts as a transmitter and the car as a receiver. Then, when the car receives the radio waves, which are electromagnetic waves, the waves generate a current in a wire in the car ...

  18. Propagation: Antennas and radio waves

    Ground waves are radio waves that travel near the surface of the Earth and sky waves are radio waves that are reflected back to Earth from the ionosphere. ... This energy will not travel through ...

  19. What Radio Waves Can Travel Through and What They Cannot

    Radio waves will also be adversely affected by metal and water, which they cannot pass through. That is because water and metal are both electrical conductors. Like the ionosphere, metal and water contain many free electrons, which will vibrate when a radio wave hits the surface, and the wave will bounce back.

  20. How far do radio waves travel?

    $\begingroup$ @zEyeland There can be radio waves and sound waves of the same frequency (low frequency radio waves and high frequency sound might both be found in the kHz range). You can't hear them because they're waves in the electromagnetic field, not in the pressure of the air. (Comments aren't a good place to ask questions. Let's wrap this up.

  21. Radio Waves: What Can & Can't They Pass Through?

    Radio waves cannot pass through materials that are dense or have a high metal content. This includes thick walls, mountains, and certain types of metals. They also cannot pass through the Earth's core or other large bodies of water. 4.

  22. Does the radio signal decay when it travels through the intergalactic

    When you emit the radio signal it starts moving at the speed of light. Radio beam is diffusing with each kilometer the signal has traveled. To the nearby receiver the signal is strong. But if the receiver is far away, the signal will become weaker and weaker until it becomes a noise.

  23. Through-the-earth mine communications

    Through-the-Earth (TTE) signalling is a type of radio signalling used in mines and caves that uses low-frequency waves to penetrate dirt and rock, which are opaque to higher-frequency conventional radio signals.. In mining, these lower-frequency signals can be relayed underground through various antennas, repeater or mesh configurations, but communication is restricted to line of sight to ...

  24. Scientists discover phenomenon impacting Earth's radiation belts

    The wave carries lightning energy, which enters the ionosphere at low latitudes, to the magnetosphere. The energy is reflected upward by the ionosphere's lower boundary, at about 55 miles altitude ...

  25. Turns out you can transmit sound in a vacuum, just not very far

    Sound waves travel by vibrating through the particles of a medium, such as air or water, from a source to a receiver. So in a vacuum, there is no travel medium. (Outer space is not actually a ...

  26. Scientists discover phenomenon impacting Earth's radiation belts

    The wave carries lightning energy, which enters the ionosphere at low latitudes, to the magnetosphere. The energy is reflected upward by the ionosphere's lower boundary, at about 55 miles altitude ...