Image that reads Space Place and links to spaceplace.nasa.gov.

Is Time Travel Possible?

We all travel in time! We travel one year in time between birthdays, for example. And we are all traveling in time at approximately the same speed: 1 second per second.

We typically experience time at one second per second. Credit: NASA/JPL-Caltech

NASA's space telescopes also give us a way to look back in time. Telescopes help us see stars and galaxies that are very far away . It takes a long time for the light from faraway galaxies to reach us. So, when we look into the sky with a telescope, we are seeing what those stars and galaxies looked like a very long time ago.

However, when we think of the phrase "time travel," we are usually thinking of traveling faster than 1 second per second. That kind of time travel sounds like something you'd only see in movies or science fiction books. Could it be real? Science says yes!

Image of galaxies, taken by the Hubble Space Telescope.

This image from the Hubble Space Telescope shows galaxies that are very far away as they existed a very long time ago. Credit: NASA, ESA and R. Thompson (Univ. Arizona)

How do we know that time travel is possible?

More than 100 years ago, a famous scientist named Albert Einstein came up with an idea about how time works. He called it relativity. This theory says that time and space are linked together. Einstein also said our universe has a speed limit: nothing can travel faster than the speed of light (186,000 miles per second).

Einstein's theory of relativity says that space and time are linked together. Credit: NASA/JPL-Caltech

What does this mean for time travel? Well, according to this theory, the faster you travel, the slower you experience time. Scientists have done some experiments to show that this is true.

For example, there was an experiment that used two clocks set to the exact same time. One clock stayed on Earth, while the other flew in an airplane (going in the same direction Earth rotates).

After the airplane flew around the world, scientists compared the two clocks. The clock on the fast-moving airplane was slightly behind the clock on the ground. So, the clock on the airplane was traveling slightly slower in time than 1 second per second.

Credit: NASA/JPL-Caltech

Can we use time travel in everyday life?

We can't use a time machine to travel hundreds of years into the past or future. That kind of time travel only happens in books and movies. But the math of time travel does affect the things we use every day.

For example, we use GPS satellites to help us figure out how to get to new places. (Check out our video about how GPS satellites work .) NASA scientists also use a high-accuracy version of GPS to keep track of where satellites are in space. But did you know that GPS relies on time-travel calculations to help you get around town?

GPS satellites orbit around Earth very quickly at about 8,700 miles (14,000 kilometers) per hour. This slows down GPS satellite clocks by a small fraction of a second (similar to the airplane example above).

Illustration of GPS satellites orbiting around Earth

GPS satellites orbit around Earth at about 8,700 miles (14,000 kilometers) per hour. Credit: GPS.gov

However, the satellites are also orbiting Earth about 12,550 miles (20,200 km) above the surface. This actually speeds up GPS satellite clocks by a slighter larger fraction of a second.

Here's how: Einstein's theory also says that gravity curves space and time, causing the passage of time to slow down. High up where the satellites orbit, Earth's gravity is much weaker. This causes the clocks on GPS satellites to run faster than clocks on the ground.

The combined result is that the clocks on GPS satellites experience time at a rate slightly faster than 1 second per second. Luckily, scientists can use math to correct these differences in time.

Illustration of a hand holding a phone with a maps application active.

If scientists didn't correct the GPS clocks, there would be big problems. GPS satellites wouldn't be able to correctly calculate their position or yours. The errors would add up to a few miles each day, which is a big deal. GPS maps might think your home is nowhere near where it actually is!

In Summary:

Yes, time travel is indeed a real thing. But it's not quite what you've probably seen in the movies. Under certain conditions, it is possible to experience time passing at a different rate than 1 second per second. And there are important reasons why we need to understand this real-world form of time travel.

If you liked this, you may like:

Illustration of a game controller that links to the Space Place Games menu.

  • Skip to main content
  • Keyboard shortcuts for audio player

Short Wave

  • LISTEN & FOLLOW
  • Apple Podcasts
  • Google Podcasts
  • Amazon Music
  • Amazon Alexa

Your support helps make our show possible and unlocks access to our sponsor-free feed.

Paradox-Free Time Travel Is Theoretically Possible, Researchers Say

Matthew S. Schwartz 2018 square

Matthew S. Schwartz

do time travel exist

A dog dressed as Marty McFly from Back to the Future attends the Tompkins Square Halloween Dog Parade in 2015. New research says time travel might be possible without the problems McFly encountered. Timothy A. Clary/AFP via Getty Images hide caption

A dog dressed as Marty McFly from Back to the Future attends the Tompkins Square Halloween Dog Parade in 2015. New research says time travel might be possible without the problems McFly encountered.

"The past is obdurate," Stephen King wrote in his book about a man who goes back in time to prevent the Kennedy assassination. "It doesn't want to be changed."

Turns out, King might have been on to something.

Countless science fiction tales have explored the paradox of what would happen if you went back in time and did something in the past that endangered the future. Perhaps one of the most famous pop culture examples is in Back to the Future , when Marty McFly goes back in time and accidentally stops his parents from meeting, putting his own existence in jeopardy.

But maybe McFly wasn't in much danger after all. According a new paper from researchers at the University of Queensland, even if time travel were possible, the paradox couldn't actually exist.

Researchers ran the numbers and determined that even if you made a change in the past, the timeline would essentially self-correct, ensuring that whatever happened to send you back in time would still happen.

"Say you traveled in time in an attempt to stop COVID-19's patient zero from being exposed to the virus," University of Queensland scientist Fabio Costa told the university's news service .

"However, if you stopped that individual from becoming infected, that would eliminate the motivation for you to go back and stop the pandemic in the first place," said Costa, who co-authored the paper with honors undergraduate student Germain Tobar.

"This is a paradox — an inconsistency that often leads people to think that time travel cannot occur in our universe."

A variation is known as the "grandfather paradox" — in which a time traveler kills their own grandfather, in the process preventing the time traveler's birth.

The logical paradox has given researchers a headache, in part because according to Einstein's theory of general relativity, "closed timelike curves" are possible, theoretically allowing an observer to travel back in time and interact with their past self — potentially endangering their own existence.

But these researchers say that such a paradox wouldn't necessarily exist, because events would adjust themselves.

Take the coronavirus patient zero example. "You might try and stop patient zero from becoming infected, but in doing so, you would catch the virus and become patient zero, or someone else would," Tobar told the university's news service.

In other words, a time traveler could make changes, but the original outcome would still find a way to happen — maybe not the same way it happened in the first timeline but close enough so that the time traveler would still exist and would still be motivated to go back in time.

"No matter what you did, the salient events would just recalibrate around you," Tobar said.

The paper, "Reversible dynamics with closed time-like curves and freedom of choice," was published last week in the peer-reviewed journal Classical and Quantum Gravity . The findings seem consistent with another time travel study published this summer in the peer-reviewed journal Physical Review Letters. That study found that changes made in the past won't drastically alter the future.

Bestselling science fiction author Blake Crouch, who has written extensively about time travel, said the new study seems to support what certain time travel tropes have posited all along.

"The universe is deterministic and attempts to alter Past Event X are destined to be the forces which bring Past Event X into being," Crouch told NPR via email. "So the future can affect the past. Or maybe time is just an illusion. But I guess it's cool that the math checks out."

  • grandfather paradox
  • time travel

Is time travel possible? Why one scientist says we 'cannot ignore the possibility.'

do time travel exist

A common theme in science-fiction media , time travel is captivating. It’s defined by the late philosopher David Lewis in his essay “The Paradoxes of Time Travel” as “[involving] a discrepancy between time and space time. Any traveler departs and then arrives at his destination; the time elapsed from departure to arrival … is the duration of the journey.”

Time travel is usually understood by most as going back to a bygone era or jumping forward to a point far in the future . But how much of the idea is based in reality? Is it possible to travel through time? 

Is time travel possible?

According to NASA, time travel is possible , just not in the way you might expect. Albert Einstein’s theory of relativity says time and motion are relative to each other, and nothing can go faster than the speed of light , which is 186,000 miles per second. Time travel happens through what’s called “time dilation.”

Time dilation , according to Live Science, is how one’s perception of time is different to another's, depending on their motion or where they are. Hence, time being relative. 

Learn more: Best travel insurance

Dr. Ana Alonso-Serrano, a postdoctoral researcher at the Max Planck Institute for Gravitational Physics in Germany, explained the possibility of time travel and how researchers test theories. 

Space and time are not absolute values, Alonso-Serrano said. And what makes this all more complex is that you are able to carve space-time .

“In the moment that you carve the space-time, you can play with that curvature to make the time come in a circle and make a time machine,” Alonso-Serrano told USA TODAY. 

She explained how, theoretically, time travel is possible. The mathematics behind creating curvature of space-time are solid, but trying to re-create the strict physical conditions needed to prove these theories can be challenging. 

“The tricky point of that is if you can find a physical, realistic, way to do it,” she said. 

Alonso-Serrano said wormholes and warp drives are tools that are used to create this curvature. The matter needed to achieve curving space-time via a wormhole is exotic matter , which hasn’t been done successfully. Researchers don’t even know if this type of matter exists, she said.

“It's something that we work on because it's theoretically possible, and because it's a very nice way to test our theory, to look for possible paradoxes,” Alonso-Serrano added.

“I could not say that nothing is possible, but I cannot ignore the possibility,” she said. 

She also mentioned the anecdote of  Stephen Hawking’s Champagne party for time travelers . Hawking had a GPS-specific location for the party. He didn’t send out invites until the party had already happened, so only people who could travel to the past would be able to attend. No one showed up, and Hawking referred to this event as "experimental evidence" that time travel wasn't possible.

What did Albert Einstein invent?: Discoveries that changed the world

Just Curious for more? We've got you covered

USA TODAY is exploring the questions you and others ask every day. From "How to watch the Marvel movies in order" to "Why is Pluto not a planet?" to "What to do if your dog eats weed?" – we're striving to find answers to the most common questions you ask every day. Head to our Just Curious section to see what else we can answer for you. 

a graphic of a tunnel in outer space with eight analog alarm clocks appearing to tumb;e through the tunnel

Is time travel even possible? An astrophysicist explains the science behind the science fiction

do time travel exist

Assistant Professor of Astronomy and Astrophysics, University of Maryland, Baltimore County

Disclosure statement

Adi Foord does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

University of Maryland, Baltimore County provides funding as a member of The Conversation US.

View all partners

do time travel exist

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to [email protected] .

Will it ever be possible for time travel to occur? – Alana C., age 12, Queens, New York

Have you ever dreamed of traveling through time, like characters do in science fiction movies? For centuries, the concept of time travel has captivated people’s imaginations. Time travel is the concept of moving between different points in time, just like you move between different places. In movies, you might have seen characters using special machines, magical devices or even hopping into a futuristic car to travel backward or forward in time.

But is this just a fun idea for movies, or could it really happen?

The question of whether time is reversible remains one of the biggest unresolved questions in science. If the universe follows the laws of thermodynamics , it may not be possible. The second law of thermodynamics states that things in the universe can either remain the same or become more disordered over time.

It’s a bit like saying you can’t unscramble eggs once they’ve been cooked. According to this law, the universe can never go back exactly to how it was before. Time can only go forward, like a one-way street.

Time is relative

However, physicist Albert Einstein’s theory of special relativity suggests that time passes at different rates for different people. Someone speeding along on a spaceship moving close to the speed of light – 671 million miles per hour! – will experience time slower than a person on Earth.

People have yet to build spaceships that can move at speeds anywhere near as fast as light, but astronauts who visit the International Space Station orbit around the Earth at speeds close to 17,500 mph. Astronaut Scott Kelly has spent 520 days at the International Space Station, and as a result has aged a little more slowly than his twin brother – and fellow astronaut – Mark Kelly. Scott used to be 6 minutes younger than his twin brother. Now, because Scott was traveling so much faster than Mark and for so many days, he is 6 minutes and 5 milliseconds younger .

Some scientists are exploring other ideas that could theoretically allow time travel. One concept involves wormholes , or hypothetical tunnels in space that could create shortcuts for journeys across the universe. If someone could build a wormhole and then figure out a way to move one end at close to the speed of light – like the hypothetical spaceship mentioned above – the moving end would age more slowly than the stationary end. Someone who entered the moving end and exited the wormhole through the stationary end would come out in their past.

However, wormholes remain theoretical: Scientists have yet to spot one. It also looks like it would be incredibly challenging to send humans through a wormhole space tunnel.

Paradoxes and failed dinner parties

There are also paradoxes associated with time travel. The famous “ grandfather paradox ” is a hypothetical problem that could arise if someone traveled back in time and accidentally prevented their grandparents from meeting. This would create a paradox where you were never born, which raises the question: How could you have traveled back in time in the first place? It’s a mind-boggling puzzle that adds to the mystery of time travel.

Famously, physicist Stephen Hawking tested the possibility of time travel by throwing a dinner party where invitations noting the date, time and coordinates were not sent out until after it had happened. His hope was that his invitation would be read by someone living in the future, who had capabilities to travel back in time. But no one showed up.

As he pointed out : “The best evidence we have that time travel is not possible, and never will be, is that we have not been invaded by hordes of tourists from the future.”

Telescopes are time machines

Interestingly, astrophysicists armed with powerful telescopes possess a unique form of time travel. As they peer into the vast expanse of the cosmos, they gaze into the past universe. Light from all galaxies and stars takes time to travel, and these beams of light carry information from the distant past. When astrophysicists observe a star or a galaxy through a telescope, they are not seeing it as it is in the present, but as it existed when the light began its journey to Earth millions to billions of years ago.

NASA’s newest space telescope, the James Webb Space Telescope , is peering at galaxies that were formed at the very beginning of the Big Bang, about 13.7 billion years ago.

While we aren’t likely to have time machines like the ones in movies anytime soon, scientists are actively researching and exploring new ideas. But for now, we’ll have to enjoy the idea of time travel in our favorite books, movies and dreams.

Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to [email protected] . Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.

  • Time travel
  • Special Relativity
  • Thermodynamics
  • Stephen Hawking
  • Curious Kids
  • Curious Kids US
  • Time travel paradox

do time travel exist

Biocloud Project Manager - Australian Biocommons

do time travel exist

Director, Defence and Security

do time travel exist

Opportunities with the new CIEHF

do time travel exist

School of Social Sciences – Public Policy and International Relations opportunities

do time travel exist

Deputy Editor - Technology

May 15, 2023

Is Time Travel Even Possible?

Two SciAm editors duke it out to see if wormholes and multiverses could in fact exist.

By Lee Billings , Clara Moskowitz , Alexa Lim & Tulika Bose

Warp to planet Earth.

Nickpanya/Getty Images ; Elements provided by NASA; Title animation by Kelso Harper

Science, Quickly

SUBSCRIBE:   Apple  |  Spotify

Clara Moskowitz:  We’re here today to talk about time travel. A perennial – dare I say, timeless–topic of science fiction, but is it possible? Is there any chance at all that it could actually happen?

Lee Billings: No. No, no no no no. (laughs). Well, kinda. Not really. ARGH. I’m Lee Billings.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

Moskowitz: I’m Clara Moskowitz, and this is Cosmos, Quickly , the biweekly space podcast from Scientific American . 

[Clip: Show theme music]

Moskowitz: We’re going to have a little friendly debate.

Billings: Really? I came for a throwdown.

Moskowitz: Well, a wrangle. A parley. A confab. Lee, what do you have against time travel?

Billings: So I love the idea of time travel! And in fact I do it all the time—like most everyone else I’m traveling into the future at one second per second. I’m less of a fan, though, of more speculative time travel, which is good fodder for goofy sci-fi stories, but in the real world it’s an implausible distraction.

Moskowitz: But really, we can stay within plausible physics and still see how more extreme versions of time travel are possible. See, Einstein’s special theory of relativity shows that the rate time flows at depends on how fast you’re moving. 

Billings: Einstein strikes again, what a rascal.

Moskowitz: If you’re traveling in a starship at close to the speed of light, you’ll still experience the familiar one-second-per-second ticking of a clock– but an observer back on Earth would see your clock moving glacially slow. To them, you’d be moving through time at a snail’s pace. That means that when you finally got back,  maybe only a year would have passed for you, but a century could have gone by for your friends on Earth. Ergo, you just traveled to the future! 

Billings: Right, right, no one’s disputing any of that! We can even measure this sort of “time dilation” right now on Earth, not with starships, but with subatomic particles. Some of those particles have very short lifetimes, decaying almost instantaneously. But if we drastically speed them up, like in a particle accelerator, we find they endure longer in proportion to how fast they’re going. So riddle me this, though, Clara: How can we travel into the past? That’s something so hard to do–effectively impossible, almost–that it’s scarcely worth thinking about.

[Clip: Back to the Future : “This is what makes time travel possible. The flux capacitor!”]

Moskowitz: I get it—no one has yet conceived of a way to journey to the past. But the crazy thing is it’s not impossible. Time is one of the four dimensions in the universe, along with three dimensions of space. And we move through space in all directions just fine, and according to physics, travel through time should be just as possible.

One way that people have looked into is via a wormhole—a shortcut bridge through spacetime that was predicted by general relativity. Wormholes can connect distant points in spacetime, meaning you could conceivably use one to bridge not just the gap between here and a distant galaxy, but the span between 2023 and 1923. 

[CLIP: Interstellar : “That’s the wormhole.”]

Billings : Ah yes, wormholes—the last refuge of scoundrels and desperate physicists. The trouble with wormholes Clara, is that, unlike a DeLorean, we have no evidence they actually exist—and, even if they did, it seems the only ways to make them traversable and stable involves using negative energy or negative mass  to prop them open. And, guess what, just like wormholes themselves, we have no evidence these weird forms of matter and energy actually exist, either. And let’s just beat this dead horse one more time—even if wormholes exist, as well as the means to make them traversable, to go back in time seems to require anchoring one end in a region of very warped spacetime, like around a black hole, or accelerating it to nearly lightspeed. Are you sensing a theme here, Clara?

Moskowitz:  Yeah, yeah. All I can say is that just because there’s no evidence any of these things exist, there’s also no evidence they don’t or can’t exist. Wormholes are real solutions to the equations of general relativity, and even negative energy and mass are concepts that come up in the math and aren’t prohibited.

Billings: Well how about some more practical arguments, then? If time travel were possible, wouldn’t we have met some time travelers by now? Wouldn’t someone have gone back and killed Hitler—or at least prevented me from wearing that ridiculous outfit to my high school prom? You know there’s a famous story about physicist Stephen Hawking, who invited time travelers to come to a party he was holding. The trick was the the party happened in 2009, but the invitation came out in a miniseries that was broadcast in 2010—thus, only time travelers would have been able to attend. 

[CLIP: Stephen Hawking Time Travel Party: “Here is the invitation, giving the exact coordinates in time and space. I am hoping in one form or another it will survive for many thousands of years.”]

Billings: Sadly, the hors d'oeuvres went uneaten and the champagne sat unopened, because, clearly, time travel to the past is impossible! 

Moskowitz: I admit a party with Stephen Hawking should have been pretty alluring to time travelers, if they were out there. But you’re forgetting about the International Clause of Secrecy that all time travelers probably have to swear to, making sure to hide their identities and abilities from those in earlier eras.  

Billings: Hmm, yes the clause of secrecy here. Feels like we’re really veering into science fiction territory special pleading here. And don’t forget all the paradoxes that we have to worry about too. There are lots of good reasons to think time travel might introduce insurmountable paradoxes in physics. The most famous being the grandfather—or grandmother—paradox. If time travel were possible into the past, so the thinking goes, then a person could go back in time and kill their own grandparents, thus making it impossible for them to be born and impossible for them to travel back in time to ever commit the murder, and so on and so on.

Moskowitz: I wonder if it could be like a many-worlds scenario, where each change a time traveler makes to the past spawns a whole new universe that carries on from that point. So if I went back in time and killed one of my forebears, then a new branch universe would begin where that whole line of descendents, including me, never existed. I mean, it sounds crazy, but then again, physics is pretty enamored with multiverses, and they seem to pop up for lots of reasons already. Maybe it’s not impossible? 

Billings: If not impossible, then I’d say, implausible.

Moskowitz: Well, I’m forever an optimist, Lee! Thanks for listening to the Cosmos, Quickly .

Billings: Our show is produced by Jeff DelViscio, Tulika Bose and Kelso Harper.  Our music was composed by Dominic Smith.

Moskowtiz: If you like the show, please consider rating or leaving a review. You can also email feedback, questions, and tips to [email protected]

Billings: For more spacetime hijinks and all your science news, head to SciAm.com. This has been Cosmos, Quickly . I’m Lee Billings. 

Moskowitz:  I’m Clara Moskowitz. Billings: And we’ll see you next time, in the future!

do time travel exist

Is Time Travel Possible?

  • Cosmology & Astrophysics
  • Physics Laws, Concepts, and Principles
  • Quantum Physics
  • Important Physicists
  • Thermodynamics
  • Weather & Climate

do time travel exist

  • M.S., Mathematics Education, Indiana University
  • B.A., Physics, Wabash College

Stories regarding travel into the past and the future have long captured our imagination, but the question of whether time travel is possible is a thorny one that gets right to the heart of understanding what physicists mean when they use the word "time." 

Modern physics teaches us that time is one of the most mysterious aspects of our universe, though it may at first seem straightforward. Einstein revolutionized our understanding of the concept, but even with this revised understanding, some scientists still ponder the question of whether or not ​ time actually exists or whether it is a mere "stubbornly persistent illusion" (as Einstein once called it). Whatever time is, though, physicists (and fiction writers) have found some interesting ways to manipulate it to consider traversing it in unorthodox ways.

Time and Relativity

Though referenced in H.G. Wells' The Time Machine (1895), the actual science of time travel didn't come into being until well into the twentieth century, as a side-effect of Albert Einstein 's theory of general relativity (developed in 1915). Relativity describes the physical fabric of the universe in terms of a 4-dimensional spacetime, which includes three spatial dimensions (up/down, left/right, and front/back) along with one time dimension. Under this theory, which has been proven by numerous experiments over the last century, gravity is a result of the bending of this spacetime in response to the presence of matter. In other words, given a certain configuration of matter, the actual spacetime fabric of the universe can be altered in significant ways.

One of the amazing consequences of relativity is that movement can result in a difference in the way time passes, a process known as time dilation . This is most dramatically manifested in the classic Twin Paradox . In this method of "time travel," you can move into the future faster than normal, but there's not really any way back. (There's a slight exception, but more on that later in the article.)

Early Time Travel

In 1937, Scottish physicist W. J. van Stockum first applied general relativity in a way that opened the door for time travel. By applying the equation of general relativity to a situation with an infinitely long, extremely dense rotating cylinder (kind of like an endless barbershop pole). The rotation of such a massive object actually creates a phenomenon known as "frame dragging," which is that it actually drags spacetime along with it. Van Stockum found that in this situation, you could create a path in 4-dimensional spacetime which began and ended at the same point - something called a closed timelike curve - which is the physical result that allows time travel. You can set off in a space ship and travel a path which brings you back to the exact same moment you started out at.

Though an intriguing result, this was a fairly contrived situation, so there wasn't really much concern about it taking place. A new interpretation was about to come along, however, which was much more controversial.

In 1949, the mathematician Kurt Godel - a friend of Einstein's and a colleague at Princeton University's Institute for Advanced Study - decided to tackle a situation where the whole universe is rotating. In Godel's solutions, time travel was actually allowed by the equations if the universe were rotating. A rotating universe could itself function as a time machine.

Now, if the universe were rotating, there would be ways to detect it (light beams would bend, for example, if the whole universe were rotating), and so far the evidence is overwhelmingly strong that there is no sort of universal rotation. So again, time travel is ruled out by this particular set of results. But the fact is that things in the universe do rotate, and that again opens up the possibility.

Time Travel and Black Holes

In 1963, New Zealand mathematician Roy Kerr used the field equations to analyze a rotating black hole , called a Kerr black hole, and found that the results allowed a path through a wormhole in the black hole, missing the singularity at the center, and make it out the other end. This scenario also allows for closed timelike curves, as theoretical physicist Kip Thorne realized years later.

In the early 1980s, while Carl Sagan worked on his 1985 novel Contact , he approached Kip Thorne with a question about the physics of time travel, which inspired Thorne to examine the concept of using a black hole as a means of time travel. Together with the physicist Sung-Won Kim, Thorne realized that you could (in theory) have a black hole with a wormhole connecting it to another point in space held open by some form of negative energy.

But just because you have a wormhole doesn't mean that you have a time machine. Now, let's assume that you could move one end of the wormhole (the "movable end). You place the movable end on a spaceship, shooting it off into space at nearly the speed of light . Time dilation kicks in, and the time experienced by the movable end is much less than the time experienced by the fixed end. Let's assume that you move the movable end 5,000 years into the future of the Earth, but the movable end only "ages" 5 years. So you leave in 2010 AD, say, and arrive in 7010 AD.

However, if you travel through the movable end, you will actually pop out of the fixed end in 2015 AD (since 5 years have passed back on Earth). What? How does this work?

Well, the fact is that the two ends of the wormhole are connected. No matter how far apart they are, in spacetime, they're still basically "near" each other. Since the movable end is only five years older than when it left, going through it will send you back to the related point on the fixed wormhole. And if someone from 2015 AD Earth steps through the fixed wormhole, they'd come out in 7010 AD from the movable wormhole. (If someone stepped through the wormhole in 2012 AD, they'd end up on the spaceship somewhere in the middle of the trip and so on.)

Though this is the most physically reasonable description of a time machine, there are still problems. No one knows if wormholes or negative energy exist, nor how to put them together in this way if they do exist. But it is (in theory) possible.

  • What Is the Twin Paradox? Real Time Travel
  • Time Travel: Dream or Possible Reality?
  • Can We Travel Through Time to the Past?
  • Einstein's Theory of Relativity
  • Is Warp Drive From 'Star Trek' Possible?
  • Closed Timelike Curve
  • Understanding Time Dilation Effects in Physics
  • An Introduction to Black Holes
  • Wormholes: What Are They and Can We Use Them?
  • Understanding Cosmology and Its Impact
  • The History of Gravity
  • Black Holes and Hawking Radiation
  • Leonard Susskind Bio
  • Amazing Astronomy Facts
  • Learn How to Rotate Graphics in SVG
  • To the Right, To the Right (The Coriolis Effect)

Subscribe or renew today

Every print subscription comes with full digital access

Science News

Can time travel survive a theory of everything.

It’s complicated. But studying ways to visit the past could help us understand the cosmos

Tom Siegfried

By Tom Siegfried

Contributing Correspondent

September 20, 2019 at 8:00 am

Doctor Who

The TARDIS and other fictional time machines make time travel look relatively easy (Peter Capaldi and Jenna Coleman are shown promoting the BBC’s Doctor Who ). But just because it’s permitted by the laws of physics, doesn’t mean it’s practical.

Twocoms/Shutterstock

Share this:

In many universes, typically those on TV shows or in movies, time travel is not much more difficult than driving downtown in any major city during rush hour. Sure, the traffic can get gnarly, but no law of physics prevents you from reaching your destination eventually.

In real life, time travel isn’t so easy. In fact, it’s probably impossible, a fantasy more farfetched than visiting Alice’s Wonderland, finding gold at the end of a rainbow or cleansing all the hate speech off of Facebook.

Yet time travel does not necessarily violate the laws of physics. In Einstein’s theory of gravity — general relativity — space and time are merged as spacetime, which allows for the possibility of pathways that could bend back to the past and loop back to the future.

Such paths are known as closed timelike curves. They’re a little like great circles around the surface of the Earth — if you start out in one direction and keep going straight, eventually you come back to where you started from. In that case the Earth’s curvature guides you back to your previous point in space; with closed timelike curves, the geometry of spacetime guides you back to an earlier moment in time.

Nobody thinks that general relativity’s time loops would be practical for time travel even if they are possible. For one thing, they might exist only under certain circumstances — the universe would have to be rotating, and not expanding — as the mathematician Kurt Gödel showed in the 1940s. But the universe is expanding, and probably isn’t rotating, so that dampens the prospects for revisiting the Stone Age or acquiring a pet dinosaur.

Besides, even if such pathways did exist, building a ship to traverse them would cost more than all the DeLoreans (and all other transportation vehicles) ever made. It would need a cruising speed of 140,000 miles per second. And with no place to stop for gas (or whatever), the fuel tank would have to be more than a trillion times the size of an oil tanker.

So for practical purposes, time travel’s time has not yet arrived. But even if it’s possible only in principle, the potential ramifications for the basic physics of the universe might make it worth the time to investigate it. Time loops might not enable you to traverse the cosmos in a TARDIS, but perhaps could still help you understand the cosmos more deeply.

A first step would be to attempt to figure out exactly what the relevant laws of physics really are. Einstein’s general relativity is great, but indubitably not the last word about the physics of the universe. After all, it coexists uneasily with quantum mechanics, which rules the subatomic world and presumably, since everything is made of subatomic stuff, the rest of the universe as well. Whether the quantum–general relativity combo truly permits time travel might depend on what the ultimate correct theory combining the two turns out to be.

Several candidate theories have been developed for merging general relativity and quantum mechanics into a unified theory. It’s an open question whether these candidates would allow time travel in something like the way general relativity does, philosopher Christian Wüthrich of the University of Geneva notes in a new paper.

It’s possible, he says, that a theory that supersedes general relativity might still in some way include the equivalent of general relativity’s timelike loops. And even if the basic theory does not include such loops, they still might emerge in practice.

“Although the fundamental theory would then remain inhospitable to time travel itself, it would tolerate the possibility of time travel at some other, less fundamental, scale,” Wüthrich writes in his paper , posted online in June. “Depending on what the relationship between the fundamental theory and emergent spacetime may be in each case, we may find that the emergent, macroscopic spacetime structure permits time travel.”

Reviewing the major proposals for quantum gravity theories does not provide a lot of hope, though. One approach, known as causal set theory, requires sets of events to be ordered in a proper cause-and-effect relationship. So its central idea seems to rule out closed timelike curves.

Another popular approach, known as loop quantum gravity, envisions space to be constructed of fundamental loops (kind of like “atoms of space”). This view has encountered technical difficulties, one of which is how to work time into the picture with space. “Thus, we seem to be faced with a temporally innocuous structure in which no meaningful sense of time travel is permitted,” Wüthrich writes.

It’s possible that the networks of these “atoms of space” could produce high-level spacetime that did contain closed timelike curves. But analysis of the details at this stage of loop quantum gravity’s development does not offer much reason for optimism, Wüthrich concludes.

Time travel’s future might look a little brighter if the correct approach to quantum gravity turns out to be string theory, currently the most popular contender. In string theory, matter’s basic particles are tiny vibrating snippets of energy, called “strings” because they extend in one dimension. Multiple versions of string theory have been constructed, suggesting that they are different manifestations of a more fundamental master theory known as M-theory.

“As M-theory does not yet exist, it is impossible to determine its verdict on time travel,” writes Wüthrich. But investigations of various string theory scenarios do suggest that the ultimate theory would, in fact, naturally incorporate closed timelike curves.

Even if time loops exist in the fundamental theory, though, there’s still no guarantee that they would be preserved in the emergent large-scale spacetime that would be relevant in real life. For that matter, Wüthrich points out, predicting the existence of time travel loops might be taken as evidence against the theory, considering the serious likelihood that time travel really isn’t possible at all.

So whether general relativity’s time loops will survive in a deeper theory remains an open question. “A more fundamental theory may well admit structures amounting to closed timelike curves and thus permit time travel,” Wüthrich asserts. “This clearly remains a live option at the present stage of knowledge.”

In any case, investigating whether quantum gravity theories retain general relativity’s time travel loophole can illuminate many tough questions that must be answered to develop a successful theory and understand how it relates to general relativity. “For this reason alone,” Wüthrich writes, “the question of time travel beyond general relativity is worth our while.”

More Stories from Science News on Physics

A tiny and portable gravimeter can sense changes in the Earth's gravitational field

A teeny device can measure subtle shifts in Earth’s gravitational field

do time travel exist

Timbre can affect what harmony is music to our ears

A photograph of a diamond anvil used to crush materials at high pressures and ultracold temperatures.

50 years ago, superconductors were warming up

An image of a forest

Forests might serve as enormous neutrino detectors 

a nuclear intercontinental ballistic missile in a silo

‘Countdown’ takes stock of the U.S. nuclear weapons stockpile

Sekazi Mtingwa

Physicist Sekazi Mtingwa considers himself an apostle of science

Two workers stand in front of equipment at the National Ignition Facility.

Here’s how scientists reached nuclear fusion ‘ignition’ for the first time

an image that is filled with nothing but blueberries

Here’s why blueberries are blue

From the nature index.

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber? Become one now .

Futurity is your source of research news from leading universities.

  • About Futurity
  • Universities
  • Environment

Physicist explains why time travel isn’t possible

(Credit: Georgi Kostadinov/Flickr )

You are free to share this article under the Attribution 4.0 International license.

A simple question from his wife—Does physics really allow people to travel back in time?—propelled physicist Richard Muller on a quest to resolve a fundamental problem that had puzzled him throughout his career: Why does the arrow of time flow inexorably toward the future, constantly creating new “nows?”

“The future does not yet exist … it is being created.”

That quest resulted in a new book called NOW: The Physics of Time (W. W. Norton, 2016), which delves into the history of philosophers’ and scientists’ concepts of time, uncovers a tendency physicists have to be vague about time’s passage, demolishes the popular explanation for the arrow of time,“ and proposes a totally new theory.

His idea: Time is expanding because space is expanding.

“The new physics principle is that space and time are linked; when you create new space, you will create new time,” says Muller, a professor emeritus of the University of California, Berkeley.

In commenting on the theory and Muller’s new book, astrophysicist Neil deGrasse Tyson, host of the 2014 TV miniseries Cosmos: A Spacetime Odyssey , writes, “Maybe it’s right. Maybe it’s wrong. But along the way he’s given you a master class in what time is and how and why we perceive it the way we do.”

How our brains create ‘mental time travel’

“Time has been a stumbling block to our understanding of the universe,” adds Muller. “Over my career, I’ve seen a lot of nonsense published about time, and I started thinking about it and realized I had a lot to say from having taught the subject over many decades, having thought about it, having been annoyed by it, having some really interesting ways of presenting it, and some whole new ideas that have never appeared in the literature.”

The origin of ‘now’

Ever since the Big Bang explosively set off the expansion of the universe 13.8 billion years ago, the cosmos has been growing, something physicists can measure as the Hubble expansion. They don’t think of it as stars flying away from one another, however, but as stars embedded in space and space continually expanding.

Muller takes his lead from Albert Einstein, who built his theory of general relativity—the theory that explains everything from black holes to cosmic evolution—on the idea of a four-dimensional spacetime. Space is not the only thing expanding, Muller says; spacetime is expanding. And we are surfing the crest of that wave, what we call “now.”

How far into the future are you still yourself?

“Every moment, the universe gets a little bigger, and there is a little more time, and it is this leading edge of time that we refer to as now,” he writes. “The future does not yet exist … it is being created. Now is at the boundary, the shock front, the new time that is coming from nothing, the leading edge of time.”

Because the future doesn’t yet exist, we can’t travel into the future, he asserts. He argues, too, that going back in time is equally improbable, since to reverse time you would have to decrease, at least locally, the amount of space in the universe. That does happen, such as when a star explodes or a black hole evaporates. But these reduce time so infinitesimally that the effect would be hidden in the quantum uncertainty of measurement—an instance of what physicists call cosmic censorship.

“The only example I could come up with is black hole evaporation, and in that case it turns out to be censored. So I couldn’t come up with any way to reverse time, and my basic conclusion is that time travel is not possible,” he says.

Merging black holes

Muller’s theory explaining the flow of time led to a collaboration with Caltech theoretician Shaun Maguire and a paper posted online in June that explains the theory in more detail—using mathematics—and proposes a way to test it using LIGO, an experiment that detects gravitational waves created by merging black holes.

“The idea of studying time itself did not exist prior to Einstein. Einstein gave physics the gift of time.”

If Muller and Maguire are right, then when two black holes merge and create new space, they should also create new time, which would delay the gravitational wave signal LIGO observes from Earth.

“The coalescing of two black holes creates millions of cubic miles of new space, which means a one-time creation of new time,” Muller says. The black hole merger first reported by LIGO in February 2016 involved two black holes weighing about 29 and 36 times the mass of the sun, producing a final black hole weighing about 62 solar masses. The new space created in the merger would produce about 1 millisecond of new time, which is near the detection level of LIGO. A similar event at one-third the distance would allow LIGO to detect the newly created time.

‘I expect controversy!’

Whether or not the theory pans out, Muller’s book makes a good case.

“[Muller] forges a new path. I expect controversy!” writes UC Berkeley Nobel laureate Saul Perlmutter, who garnered the 2011 Nobel Prize in Physics for discovering the accelerating expansion of the universe. Muller initiated the project that led to that discovery, which involved measuring the distances and velocities of supernovae. The implication of that discovery is that the progression of time is also accelerating, driven by dark energy.

For the book project, Muller explored previous explanations for the arrow of time and discovered that many philosophers and scientists have been flummoxed by the fact that we are always living in the “now:” from Aristotle and Augustine to Paul Dirac—the discoverer of antimatter, which can be thought of as normal matter moving backward in time—and Albert Einstein. While philosophers were not afraid to express an opinion, most physicists basically ignored the issue.

“No physics theories have the flow of time built into them in any way. Time was just the platform on which you did your calculations—there was no ‘now’ mentioned, no flow of time,” Muller says. “The idea of studying time itself did not exist prior to Einstein. Einstein gave physics the gift of time.”

Team detects ripples in spacetime, just as Einstein predicted

Einstein, however, was unable to explain the flow of time into the future instead of into the past, despite the fact that the theories of physics work equally well going forward or backward in time. And although he could calculate different rates of time, depending on velocity and gravity, he had no idea why time flowed at all. The dominant idea today for the direction of time came from Arthur Eddington, who helped validate Einstein’s general theory of relativity. Eddington put forward the idea that time flows in the direction of increasing disorder in the universe, or entropy. Because the Second Law of Thermodynamics asserts that entropy can never decrease, time always increases.

Was Stephen Hawking wrong?

This idea has been the go-to explanation since. Even Stephen Hawking, in his book A Brief History of Time , doesn’t address the issue of the flow of time, other than to say that it’s “self-evident” that increasing time comes from increasing entropy.

“I don’t see any way that it affects our everyday lives. But it is fascinating.”

Muller argues, however, that it is not self-evident: it is just wrong. Life and everything we do on Earth, whether building houses or making teacups, involves decreasing the local entropy, even though the total entropy of the universe increases. “We are constantly discarding excess entropy like garbage, throwing it off to infinity in the form of heat radiation,” Muller says. “The entropy of the universe does indeed go up, but the local entropy, the entropy of the Earth and life and civilization, is constantly decreasing.

“During my first big experiment, the measurement of the cosmic microwave radiation, I realized there is 10 million times more entropy in that radiation than there is in all of the mass of the universe, and it’s not changing with time. Yet time is progressing,” he says. “The idea that the arrow of time is set by entropy does not make any predictions, it is simply a statement of a correlation. And to claim it is causation makes no sense.”

In his book, Muller explains the various paradoxes that arise from the way the theories of relativity and quantum mechanics treat time, including the Schrodinger’s cat conundrum and spooky action at a distance that quantum entanglement allows. Neither of these theories addresses the flow of time, however. Theories about wormholes that can transport you across the universe or back in time are speculative and, in many cases, wrong.

The discussion eventually leads Muller to explore deep questions about the ability of the past to predict the future and what that says about the existence of free will.

Muller admits that his new theory about time may have observable effects only in the cosmic realm, such as our interpretation of the red shift—the stretching of light waves caused by the expansion of space—which would have to be modified to reflect the simultaneous expansion of time. The two effects may not be distinguishable throughout most of the universe’s history, but the creation of time might be discernible during the rapid cosmic inflation that took place just after the Big Bang, when space and time expanded much, much faster than today.

He is optimistic that in the next few years LIGO will verify or falsify his theory.

“I think my theory is going to have an impact on calculations of the very early universe,” Muller says. “I don’t see any way that it affects our everyday lives. But it is fascinating.”

Source: UC Berkeley

Does quantum gravity exist?

What to expect during april’s solar eclipse, astronomers map universe’s active supermassive black holes, stay connected. subscribe to our newsletter..

Add your information below to receive daily updates.

  • Comments This field is for validation purposes and should be left unchanged.

Time travel is theoretically possible, calculations show. But that doesn't mean you could change the past.

  • Time travel is possible based on the laws of physics, according to researchers.
  • But time-travelers wouldn't be able to alter the past in a measurable way, they say. 
  • And the future would essentially stay the same, according to the reseachers. 

Insider Today

Imagine you could hop into a time machine, press a button, and journey back to 2019, before the novel coronavirus made the leap from animals to humans.  

What if you could find and isolate patient zero? Theoretically, the COVID-19 pandemic wouldn't happen, right? 

Not quite, because then future-you wouldn't have decided to time travel in the first place.

For decades, physicists have been studying and debating versions of this paradox: If we could travel back in time and change the past, what would happen to the future?

A 2020 study offered a potential answer: Nothing.

"Events readjust around anything that could cause a paradox, so the paradox does not happen," Germain Tobar, the study's author previously told IFLScience .

Tobar's work, published in the peer-reviewed journal Classical and Quantum Gravity in September 2020, suggests that according to the rules of theoretical physics, anything you tried to change in the past would be corrected by subsequent events.

Related stories

Put simply: It's theoretically possible to go back in time, but you couldn't change history.

The grandfather paradox

Physicists have considered time travel to be theoretically possible since Albert Einstein came up with his theory of relativity. Einstein's calculations suggest it's possible for an object in our universe to travel through space and time in a circular direction, eventually ending up at a point on its journey where it's been before – a path called a closed time-like curve.

Still, physicists continue to struggle with scenarios like the coronavirus example above, in which time-travelers alter events that already happened. The most famous example is known as the grandfather paradox: Say a time-traveler goes back to the past and kills a younger version of his or her grandfather. The grandfather then wouldn't have any children, erasing the time-traveler's parents and, of course, the time-traveler, too. But then who would kill Grandpa?

A take on this paradox appears in the movie "Back to the Future," when Marty McFly almost stops his parents from meeting in the past – potentially causing himself to disappear. 

To address the paradox, Tobar and his supervisor, Dr. Fabio Costa, used the "billiard-ball model," which imagines cause and effect as a series of colliding billiard balls, and a circular pool table as a closed time-like curve.

Imagine a bunch of billiard balls laid out across that circular table. If you push one ball from position X, it bangs around the table, hitting others in a particular pattern. 

The researchers calculated that even if you mess with the ball's pattern at some point in its journey, future interactions with other balls can correct its path, leading it to come back to the same position and speed that it would have had you not interfered.

"Regardless of the choice, the ball will fall into the same place," Dr Yasunori Nomura, a theoretical physicist at UC Berkeley, previously told Insider.

Tobar's model, in other words, says you could travel back in time, but you couldn't change how events unfolded significantly enough to alter the future, Nomura said. Applied to the grandfather paradox, then, this would mean that something would always get in the way of your attempt to kill your grandfather. Or at least by the time he did die, your grandmother would already be pregnant with your mother. 

Back to the coronavirus example. Let's say you were to travel back to 2019 and intervene in patient zero's life. According to Tobar's line of thinking, the pandemic would still happen somehow.

"You might try and stop patient zero from becoming infected, but in doing so you would catch the virus and become patient zero, or someone else would," Tobar said, according to Australia's University of Queensland , where Tobar graduated from. 

Nomura said that although the model is too simple to represent the full range of cause and effect in our universe, it's a good starting point for future physicists.  

Watch: There are 2 types of time travel and physicists agree that one of them is possible

do time travel exist

  • Main content

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Time Travel

There is an extensive literature on time travel in both philosophy and physics. Part of the great interest of the topic stems from the fact that reasons have been given both for thinking that time travel is physically possible—and for thinking that it is logically impossible! This entry deals primarily with philosophical issues; issues related to the physics of time travel are covered in the separate entries on time travel and modern physics and time machines . We begin with the definitional question: what is time travel? We then turn to the major objection to the possibility of backwards time travel: the Grandfather paradox. Next, issues concerning causation are discussed—and then, issues in the metaphysics of time and change. We end with a discussion of the question why, if backwards time travel will ever occur, we have not been visited by time travellers from the future.

1.1 Time Discrepancy

1.2 changing the past, 2.1 can and cannot, 2.2 improbable coincidences, 2.3 inexplicable occurrences, 3.1 backwards causation, 3.2 causal loops, 4.1 time travel and time, 4.2 time travel and change, 5. where are the time travellers, other internet resources, related entries, 1. what is time travel.

There is a number of rather different scenarios which would seem, intuitively, to count as ‘time travel’—and a number of scenarios which, while sharing certain features with some of the time travel cases, seem nevertheless not to count as genuine time travel: [ 1 ]

Time travel Doctor . Doctor Who steps into a machine in 2024. Observers outside the machine see it disappear. Inside the machine, time seems to Doctor Who to pass for ten minutes. Observers in 1984 (or 3072) see the machine appear out of nowhere. Doctor Who steps out. [ 2 ] Leap . The time traveller takes hold of a special device (or steps into a machine) and suddenly disappears; she appears at an earlier (or later) time. Unlike in Doctor , the time traveller experiences no lapse of time between her departure and arrival: from her point of view, she instantaneously appears at the destination time. [ 3 ] Putnam . Oscar Smith steps into a machine in 2024. From his point of view, things proceed much as in Doctor : time seems to Oscar Smith to pass for a while; then he steps out in 1984. For observers outside the machine, things proceed differently. Observers of Oscar’s arrival in the past see a time machine suddenly appear out of nowhere and immediately divide into two copies of itself: Oscar Smith steps out of one; and (through the window) they see inside the other something that looks just like what they would see if a film of Oscar Smith were played backwards (his hair gets shorter; food comes out of his mouth and goes back into his lunch box in a pristine, uneaten state; etc.). Observers of Oscar’s departure from the future do not simply see his time machine disappear after he gets into it: they see it collide with the apparently backwards-running machine just described, in such a way that both are simultaneously annihilated. [ 4 ] Gödel . The time traveller steps into an ordinary rocket ship (not a special time machine) and flies off on a certain course. At no point does she disappear (as in Leap ) or ‘turn back in time’ (as in Putnam )—yet thanks to the overall structure of spacetime (as conceived in the General Theory of Relativity), the traveller arrives at a point in the past (or future) of her departure. (Compare the way in which someone can travel continuously westwards, and arrive to the east of her departure point, thanks to the overall curved structure of the surface of the earth.) [ 5 ] Einstein . The time traveller steps into an ordinary rocket ship and flies off at high speed on a round trip. When he returns to Earth, thanks to certain effects predicted by the Special Theory of Relativity, only a very small amount of time has elapsed for him—he has aged only a few months—while a great deal of time has passed on Earth: it is now hundreds of years in the future of his time of departure. [ 6 ] Not time travel Sleep . One is very tired, and falls into a deep sleep. When one awakes twelve hours later, it seems from one’s own point of view that hardly any time has passed. Coma . One is in a coma for a number of years and then awakes, at which point it seems from one’s own point of view that hardly any time has passed. Cryogenics . One is cryogenically frozen for hundreds of years. Upon being woken, it seems from one’s own point of view that hardly any time has passed. Virtual . One enters a highly realistic, interactive virtual reality simulator in which some past era has been recreated down to the finest detail. Crystal . One looks into a crystal ball and sees what happened at some past time, or will happen at some future time. (Imagine that the crystal ball really works—like a closed-circuit security monitor, except that the vision genuinely comes from some past or future time. Even so, the person looking at the crystal ball is not thereby a time traveller.) Waiting . One enters one’s closet and stays there for seven hours. When one emerges, one has ‘arrived’ seven hours in the future of one’s ‘departure’. Dateline . One departs at 8pm on Monday, flies for fourteen hours, and arrives at 10pm on Monday.

A satisfactory definition of time travel would, at least, need to classify the cases in the right way. There might be some surprises—perhaps, on the best definition of ‘time travel’, Cryogenics turns out to be time travel after all—but it should certainly be the case, for example, that Gödel counts as time travel and that Sleep and Waiting do not. [ 7 ]

In fact there is no entirely satisfactory definition of ‘time travel’ in the literature. The most popular definition is the one given by Lewis (1976, 145–6):

What is time travel? Inevitably, it involves a discrepancy between time and time. Any traveller departs and then arrives at his destination; the time elapsed from departure to arrival…is the duration of the journey. But if he is a time traveller, the separation in time between departure and arrival does not equal the duration of his journey.…How can it be that the same two events, his departure and his arrival, are separated by two unequal amounts of time?…I reply by distinguishing time itself, external time as I shall also call it, from the personal time of a particular time traveller: roughly, that which is measured by his wristwatch. His journey takes an hour of his personal time, let us say…But the arrival is more than an hour after the departure in external time, if he travels toward the future; or the arrival is before the departure in external time…if he travels toward the past.

This correctly excludes Waiting —where the length of the ‘journey’ precisely matches the separation between ‘arrival’ and ‘departure’—and Crystal , where there is no journey at all—and it includes Doctor . It has trouble with Gödel , however—because when the overall structure of spacetime is as twisted as it is in the sort of case Gödel imagined, the notion of external time (“time itself”) loses its grip.

Another definition of time travel that one sometimes encounters in the literature (Arntzenius, 2006, 602) (Smeenk and Wüthrich, 2011, 5, 26) equates time travel with the existence of CTC’s: closed timelike curves. A curve in this context is a line in spacetime; it is timelike if it could represent the career of a material object; and it is closed if it returns to its starting point (i.e. in spacetime—not merely in space). This now includes Gödel —but it excludes Einstein .

The lack of an adequate definition of ‘time travel’ does not matter for our purposes here. [ 8 ] It suffices that we have clear cases of (what would count as) time travel—and that these cases give rise to all the problems that we shall wish to discuss.

Some authors (in philosophy, physics and science fiction) consider ‘time travel’ scenarios in which there are two temporal dimensions (e.g. Meiland (1974)), and others consider scenarios in which there are multiple ‘parallel’ universes—each one with its own four-dimensional spacetime (e.g. Deutsch and Lockwood (1994)). There is a question whether travelling to another version of 2001 (i.e. not the very same version one experienced in the past)—a version at a different point on the second time dimension, or in a different parallel universe—is really time travel, or whether it is more akin to Virtual . In any case, this kind of scenario does not give rise to many of the problems thrown up by the idea of travelling to the very same past one experienced in one’s younger days. It is these problems that form the primary focus of the present entry, and so we shall not have much to say about other kinds of ‘time travel’ scenario in what follows.

One objection to the possibility of time travel flows directly from attempts to define it in anything like Lewis’s way. The worry is that because time travel involves “a discrepancy between time and time”, time travel scenarios are simply incoherent. The time traveller traverses thirty years in one year; she is 51 years old 21 years after her birth; she dies at the age of 100, 200 years before her birth; and so on. The objection is that these are straightforward contradictions: the basic description of what time travel involves is inconsistent; therefore time travel is logically impossible. [ 9 ]

There must be something wrong with this objection, because it would show Einstein to be logically impossible—whereas this sort of future-directed time travel has actually been observed (albeit on a much smaller scale—but that does not affect the present point) (Hafele and Keating, 1972b,a). The most common response to the objection is that there is no contradiction because the interval of time traversed by the time traveller and the duration of her journey are measured with respect to different frames of reference: there is thus no reason why they should coincide. A similar point applies to the discrepancy between the time elapsed since the time traveller’s birth and her age upon arrival. There is no more of a contradiction here than in the fact that Melbourne is both 800 kilometres away from Sydney—along the main highway—and 1200 kilometres away—along the coast road. [ 10 ]

Before leaving the question ‘What is time travel?’ we should note the crucial distinction between changing the past and participating in (aka affecting or influencing) the past. [ 11 ] In the popular imagination, backwards time travel would allow one to change the past: to right the wrongs of history, to prevent one’s younger self doing things one later regretted, and so on. In a model with a single past, however, this idea is incoherent: the very description of the case involves a contradiction (e.g. the time traveller burns all her diaries at midnight on her fortieth birthday in 1976, and does not burn all her diaries at midnight on her fortieth birthday in 1976). It is not as if there are two versions of the past: the original one, without the time traveller present, and then a second version, with the time traveller playing a role. There is just one past—and two perspectives on it: the perspective of the younger self, and the perspective of the older time travelling self. If these perspectives are inconsistent (e.g. an event occurs in one but not the other) then the time travel scenario is incoherent.

This means that time travellers can do less than we might have hoped: they cannot right the wrongs of history; they cannot even stir a speck of dust on a certain day in the past if, on that day, the speck was in fact unmoved. But this does not mean that time travellers must be entirely powerless in the past: while they cannot do anything that did not actually happen, they can (in principle) do anything that did happen. Time travellers cannot change the past: they cannot make it different from the way it was—but they can participate in it: they can be amongst the people who did make the past the way it was. [ 12 ]

What about models involving two temporal dimensions, or parallel universes—do they allow for coherent scenarios in which the past is changed? [ 13 ] There is certainly no contradiction in saying that the time traveller burns all her diaries at midnight on her fortieth birthday in 1976 in universe 1 (or at hypertime A ), and does not burn all her diaries at midnight on her fortieth birthday in 1976 in universe 2 (or at hypertime B ). The question is whether this kind of story involves changing the past in the sense originally envisaged: righting the wrongs of history, preventing subsequently regretted actions, and so on. Goddu (2003) and van Inwagen (2010) argue that it does (in the context of particular hypertime models), while Smith (1997, 365–6; 2015) argues that it does not: that it involves avoiding the past—leaving it untouched while travelling to a different version of the past in which things proceed differently.

2. The Grandfather Paradox

The most important objection to the logical possibility of backwards time travel is the so-called Grandfather paradox. This paradox has actually convinced many people that backwards time travel is impossible:

The dead giveaway that true time-travel is flatly impossible arises from the well-known “paradoxes” it entails. The classic example is “What if you go back into the past and kill your grandfather when he was still a little boy?”…So complex and hopeless are the paradoxes…that the easiest way out of the irrational chaos that results is to suppose that true time-travel is, and forever will be, impossible. (Asimov 1995 [2003, 276–7]) travel into one’s past…would seem to give rise to all sorts of logical problems, if you were able to change history. For example, what would happen if you killed your parents before you were born. It might be that one could avoid such paradoxes by some modification of the concept of free will. But this will not be necessary if what I call the chronology protection conjecture is correct: The laws of physics prevent closed timelike curves from appearing . (Hawking, 1992, 604) [ 14 ]

The paradox comes in different forms. Here’s one version:

If time travel was logically possible then the time traveller could return to the past and in a suicidal rage destroy his time machine before it was completed and murder his younger self. But if this was so a necessary condition for the time trip to have occurred at all is removed, and we should then conclude that the time trip did not occur. Hence if the time trip did occur, then it did not occur. Hence it did not occur, and it is necessary that it did not occur. To reply, as it is standardly done, that our time traveller cannot change the past in this way, is a petitio principii . Why is it that the time traveller is constrained in this way? What mysterious force stills his sudden suicidal rage? (Smith, 1985, 58)

The idea is that backwards time travel is impossible because if it occurred, time travellers would attempt to do things such as kill their younger selves (or their grandfathers etc.). We know that doing these things—indeed, changing the past in any way—is impossible. But were there time travel, there would then be nothing left to stop these things happening. If we let things get to the stage where the time traveller is facing Grandfather with a loaded weapon, then there is nothing left to prevent the impossible from occurring. So we must draw the line earlier: it must be impossible for someone to get into this situation at all; that is, backwards time travel must be impossible.

In order to defend the possibility of time travel in the face of this argument we need to show that time travel is not a sure route to doing the impossible. So, given that a time traveller has gone to the past and is facing Grandfather, what could stop her killing Grandfather? Some science fiction authors resort to the idea of chaperones or time guardians who prevent time travellers from changing the past—or to mysterious forces of logic. But it is hard to take these ideas seriously—and more importantly, it is hard to make them work in detail when we remember that changing the past is impossible. (The chaperone is acting to ensure that the past remains as it was—but the only reason it ever was that way is because of his very actions.) [ 15 ] Fortunately there is a better response—also to be found in the science fiction literature, and brought to the attention of philosophers by Lewis (1976). What would stop the time traveller doing the impossible? She would fail “for some commonplace reason”, as Lewis (1976, 150) puts it. Her gun might jam, a noise might distract her, she might slip on a banana peel, etc. Nothing more than such ordinary occurrences is required to stop the time traveller killing Grandfather. Hence backwards time travel does not entail the occurrence of impossible events—and so the above objection is defused.

A problem remains. Suppose Tim, a time-traveller, is facing his grandfather with a loaded gun. Can Tim kill Grandfather? On the one hand, yes he can. He is an excellent shot; there is no chaperone to stop him; the laws of logic will not magically stay his hand; he hates Grandfather and will not hesitate to pull the trigger; etc. On the other hand, no he can’t. To kill Grandfather would be to change the past, and no-one can do that (not to mention the fact that if Grandfather died, then Tim would not have been born). So we have a contradiction: Tim can kill Grandfather and Tim cannot kill Grandfather. Time travel thus leads to a contradiction: so it is impossible.

Note the difference between this version of the Grandfather paradox and the version considered above. In the earlier version, the contradiction happens if Tim kills Grandfather. The solution was to say that Tim can go into the past without killing Grandfather—hence time travel does not entail a contradiction. In the new version, the contradiction happens as soon as Tim gets to the past. Of course Tim does not kill Grandfather—but we still have a contradiction anyway: for he both can do it, and cannot do it. As Lewis puts it:

Could a time traveler change the past? It seems not: the events of a past moment could no more change than numbers could. Yet it seems that he would be as able as anyone to do things that would change the past if he did them. If a time traveler visiting the past both could and couldn’t do something that would change it, then there cannot possibly be such a time traveler. (Lewis, 1976, 149)

Lewis’s own solution to this problem has been widely accepted. [ 16 ] It turns on the idea that to say that something can happen is to say that its occurrence is compossible with certain facts, where context determines (more or less) which facts are the relevant ones. Tim’s killing Grandfather in 1921 is compossible with the facts about his weapon, training, state of mind, and so on. It is not compossible with further facts, such as the fact that Grandfather did not die in 1921. Thus ‘Tim can kill Grandfather’ is true in one sense (relative to one set of facts) and false in another sense (relative to another set of facts)—but there is no single sense in which it is both true and false. So there is no contradiction here—merely an equivocation.

Another response is that of Vihvelin (1996), who argues that there is no contradiction here because ‘Tim can kill Grandfather’ is simply false (i.e. contra Lewis, there is no legitimate sense in which it is true). According to Vihvelin, for ‘Tim can kill Grandfather’ to be true, there must be at least some occasions on which ‘If Tim had tried to kill Grandfather, he would or at least might have succeeded’ is true—but, Vihvelin argues, at any world remotely like ours, the latter counterfactual is always false. [ 17 ]

Return to the original version of the Grandfather paradox and Lewis’s ‘commonplace reasons’ response to it. This response engenders a new objection—due to Horwich (1987)—not to the possibility but to the probability of backwards time travel.

Think about correlated events in general. Whenever we see two things frequently occurring together, this is because one of them causes the other, or some third thing causes both. Horwich calls this the Principle of V-Correlation:

if events of type A and B are associated with one another, then either there is always a chain of events between them…or else we find an earlier event of type C that links up with A and B by two such chains of events. What we do not see is…an inverse fork—in which A and B are connected only with a characteristic subsequent event, but no preceding one. (Horwich, 1987, 97–8)

For example, suppose that two students turn up to class wearing the same outfits. That could just be a coincidence (i.e. there is no common cause, and no direct causal link between the two events). If it happens every week for the whole semester, it is possible that it is a coincidence, but this is extremely unlikely . Normally, we see this sort of extensive correlation only if either there is a common cause (e.g. both students have product endorsement deals with the same clothing company, or both slavishly copy the same influencer) or a direct causal link (e.g. one student is copying the other).

Now consider the time traveller setting off to kill her younger self. As discussed, no contradiction need ensue—this is prevented not by chaperones or mysterious forces, but by a run of ordinary occurrences in which the trigger falls off the time traveller’s gun, a gust of wind pushes her bullet off course, she slips on a banana peel, and so on. But now consider this run of ordinary occurrences. Whenever the time traveller contemplates auto-infanticide, someone nearby will drop a banana peel ready for her to slip on, or a bird will begin to fly so that it will be in the path of the time traveller’s bullet by the time she fires, and so on. In general, there will be a correlation between auto-infanticide attempts and foiling occurrences such as the presence of banana peels—and this correlation will be of the type that does not involve a direct causal connection between the correlated events or a common cause of both. But extensive correlations of this sort are, as we saw, extremely rare—so backwards time travel will happen about as often as you will see two people wear the same outfits to class every day of semester, without there being any causal connection between what one wears and what the other wears.

We can set out Horwich’s argument this way:

  • If time travel were ever to occur, we should see extensive uncaused correlations.
  • It is extremely unlikely that we should ever see extensive uncaused correlations.
  • Therefore time travel is extremely unlikely to occur.

The conclusion is not that time travel is impossible, but that we should treat it the way we treat the possibility of, say, tossing a fair coin and getting heads one thousand times in a row. As Price (1996, 278 n.7) puts it—in the context of endorsing Horwich’s conclusion: “the hypothesis of time travel can be made to imply propositions of arbitrarily low probability. This is not a classical reductio, but it is as close as science ever gets.”

Smith (1997) attacks both premisses of Horwich’s argument. Against the first premise, he argues that backwards time travel, in itself, does not entail extensive uncaused correlations. Rather, when we look more closely, we see that time travel scenarios involving extensive uncaused correlations always build in prior coincidences which are themselves highly unlikely. Against the second premise, he argues that, from the fact that we have never seen extensive uncaused correlations, it does not follow that we never shall. This is not inductive scepticism: let us assume (contra the inductive sceptic) that in the absence of any specific reason for thinking things should be different in the future, we are entitled to assume they will continue being the same; still we cannot dismiss a specific reason for thinking the future will be a certain way simply on the basis that things have never been that way in the past. You might reassure an anxious friend that the sun will certainly rise tomorrow because it always has in the past—but you cannot similarly refute an astronomer who claims to have discovered a specific reason for thinking that the earth will stop rotating overnight.

Sider (2002, 119–20) endorses Smith’s second objection. Dowe (2003) criticises Smith’s first objection, but agrees with the second, concluding overall that time travel has not been shown to be improbable. Ismael (2003) reaches a similar conclusion. Goddu (2007) criticises Smith’s first objection to Horwich. Further contributions to the debate include Arntzenius (2006), Smeenk and Wüthrich (2011, §2.2) and Elliott (2018). For other arguments to the same conclusion as Horwich’s—that time travel is improbable—see Ney (2000) and Effingham (2020).

Return again to the original version of the Grandfather paradox and Lewis’s ‘commonplace reasons’ response to it. This response engenders a further objection. The autoinfanticidal time traveller is attempting to do something impossible (render herself permanently dead from an age younger than her age at the time of the attempts). Suppose we accept that she will not succeed and that what will stop her is a succession of commonplace occurrences. The previous objection was that such a succession is improbable . The new objection is that the exclusion of the time traveler from successfully committing auto-infanticide is mysteriously inexplicable . The worry is as follows. Each particular event that foils the time traveller is explicable in a perfectly ordinary way; but the inevitable combination of these events amounts to a ring-fencing of the forbidden zone of autoinfanticide—and this ring-fencing is mystifying. It’s like a grand conspiracy to stop the time traveler from doing what she wants to do—and yet there are no conspirators: no time lords, no magical forces of logic. This is profoundly perplexing. Riggs (1997, 52) writes: “Lewis’s account may do for a once only attempt, but is untenable as a general explanation of Tim’s continual lack of success if he keeps on trying.” Ismael (2003, 308) writes: “Considered individually, there will be nothing anomalous in the explanations…It is almost irresistible to suppose, however, that there is something anomalous in the cases considered collectively, i.e., in our unfailing lack of success.” See also Gorovitz (1964, 366–7), Horwich (1987, 119–21) and Carroll (2010, 86).

There have been two different kinds of defense of time travel against the objection that it involves mysteriously inexplicable occurrences. Baron and Colyvan (2016, 70) agree with the objectors that a purely causal explanation of failure—e.g. Tim fails to kill Grandfather because first he slips on a banana peel, then his gun jams, and so on—is insufficient. However they argue that, in addition, Lewis offers a non-causal—a logical —explanation of failure: “What explains Tim’s failure to kill his grandfather, then, is something about logic; specifically: Tim fails to kill his grandfather because the law of non-contradiction holds.” Smith (2017) argues that the appearance of inexplicability is illusory. There are no scenarios satisfying the description ‘a time traveller commits autoinfanticide’ (or changes the past in any other way) because the description is self-contradictory (e.g. it involves the time traveller permanently dying at 20 and also being alive at 40). So whatever happens it will not be ‘that’. There is literally no way for the time traveller not to fail. Hence there is no need for—or even possibility of—a substantive explanation of why failure invariably occurs, and such failure is not perplexing.

3. Causation

Backwards time travel scenarios give rise to interesting issues concerning causation. In this section we examine two such issues.

Earlier we distinguished changing the past and affecting the past, and argued that while the former is impossible, backwards time travel need involve only the latter. Affecting the past would be an example of backwards causation (i.e. causation where the effect precedes its cause)—and it has been argued that this too is impossible, or at least problematic. [ 18 ] The classic argument against backwards causation is the bilking argument . [ 19 ] Faced with the claim that some event A causes an earlier event B , the proponent of the bilking objection recommends an attempt to decorrelate A and B —that is, to bring about A in cases in which B has not occurred, and to prevent A in cases in which B has occurred. If the attempt is successful, then B often occurs despite the subsequent nonoccurrence of A , and A often occurs without B occurring, and so A cannot be the cause of B . If, on the other hand, the attempt is unsuccessful—if, that is, A cannot be prevented when B has occurred, nor brought about when B has not occurred—then, it is argued, it must be B that is the cause of A , rather than vice versa.

The bilking procedure requires repeated manipulation of event A . Thus, it cannot get under way in cases in which A is either unrepeatable or unmanipulable. Furthermore, the procedure requires us to know whether or not B has occurred, prior to manipulating A —and thus, it cannot get under way in cases in which it cannot be known whether or not B has occurred until after the occurrence or nonoccurrence of A (Dummett, 1964). These three loopholes allow room for many claims of backwards causation that cannot be touched by the bilking argument, because the bilking procedure cannot be performed at all. But what about those cases in which it can be performed? If the procedure succeeds—that is, A and B are decorrelated—then the claim that A causes B is refuted, or at least weakened (depending upon the details of the case). But if the bilking attempt fails, it does not follow that it must be B that is the cause of A , rather than vice versa. Depending upon the situation, that B causes A might become a viable alternative to the hypothesis that A causes B —but there is no reason to think that this alternative must always be the superior one. For example, suppose that I see a photo of you in a paper dated well before your birth, accompanied by a report of your arrival from the future. I now try to bilk your upcoming time trip—but I slip on a banana peel while rushing to push you away from your time machine, my time travel horror stories only inspire you further, and so on. Or again, suppose that I know that you were not in Sydney yesterday. I now try to get you to go there in your time machine—but first I am struck by lightning, then I fall down a manhole, and so on. What does all this prove? Surely not that your arrival in the past causes your departure from the future. Depending upon the details of the case, it seems that we might well be entitled to describe it as involving backwards time travel and backwards causation. At least, if we are not so entitled, this must be because of other facts about the case: it would not follow simply from the repeated coincidental failures of my bilking attempts.

Backwards time travel would apparently allow for the possibility of causal loops, in which things come from nowhere. The things in question might be objects—imagine a time traveller who steals a time machine from the local museum in order to make his time trip and then donates the time machine to the same museum at the end of the trip (i.e. in the past). In this case the machine itself is never built by anyone—it simply exists. The things in question might be information—imagine a time traveller who explains the theory behind time travel to her younger self: theory that she herself knows only because it was explained to her in her youth by her time travelling older self. The things in question might be actions. Imagine a time traveller who visits his younger self. When he encounters his younger self, he suddenly has a vivid memory of being punched on the nose by a strange visitor. He realises that this is that very encounter—and resignedly proceeds to punch his younger self. Why did he do it? Because he knew that it would happen and so felt that he had to do it—but he only knew it would happen because he in fact did it. [ 20 ]

One might think that causal loops are impossible—and hence that insofar as backwards time travel entails such loops, it too is impossible. [ 21 ] There are two issues to consider here. First, does backwards time travel entail causal loops? Lewis (1976, 148) raises the question whether there must be causal loops whenever there is backwards causation; in response to the question, he says simply “I am not sure.” Mellor (1998, 131) appears to claim a positive answer to the question. [ 22 ] Hanley (2004, 130) defends a negative answer by telling a time travel story in which there is backwards time travel and backwards causation, but no causal loops. [ 23 ] Monton (2009) criticises Hanley’s counterexample, but also defends a negative answer via different counterexamples. Effingham (2020) too argues for a negative answer.

Second, are causal loops impossible, or in some other way objectionable? One objection is that causal loops are inexplicable . There have been two main kinds of response to this objection. One is to agree but deny that this is a problem. Lewis (1976, 149) accepts that a loop (as a whole) would be inexplicable—but thinks that this inexplicability (like that of the Big Bang or the decay of a tritium atom) is merely strange, not impossible. In a similar vein, Meyer (2012, 263) argues that if someone asked for an explanation of a loop (as a whole), “the blame would fall on the person asking the question, not on our inability to answer it.” The second kind of response (Hanley, 2004, §5) is to deny that (all) causal loops are inexplicable. A second objection to causal loops, due to Mellor (1998, ch.12), is that in such loops the chances of events would fail to be related to their frequencies in accordance with the law of large numbers. Berkovitz (2001) and Dowe (2001) both argue that Mellor’s objection fails to establish the impossibility of causal loops. [ 24 ] Effingham (2020) considers—and rebuts—some additional objections to the possibility of causal loops.

4. Time and Change

Gödel (1949a [1990a])—in which Gödel presents models of Einstein’s General Theory of Relativity in which there exist CTC’s—can well be regarded as initiating the modern academic literature on time travel, in both philosophy and physics. In a companion paper, Gödel discusses the significance of his results for more general issues in the philosophy of time (Gödel 1949b [1990b]). For the succeeding half century, the time travel literature focussed predominantly on objections to the possibility (or probability) of time travel. More recently, however, there has been renewed interest in the connections between time travel and more general issues in the metaphysics of time and change. We examine some of these in the present section. [ 25 ]

The first thing that we need to do is set up the various metaphysical positions whose relationships with time travel will then be discussed. Consider two metaphysical questions:

  • Are the past, present and future equally real?
  • Is there an objective flow or passage of time, and an objective now?

We can label some views on the first question as follows. Eternalism is the view that past and future times, objects and events are just as real as the present time and present events and objects. Nowism is the view that only the present time and present events and objects exist. Now-and-then-ism is the view that the past and present exist but the future does not. We can also label some views on the second question. The A-theory answers in the affirmative: the flow of time and division of events into past (before now), present (now) and future (after now) are objective features of reality (as opposed to mere features of our experience). Furthermore, they are linked: the objective flow of time arises from the movement, through time, of the objective now (from the past towards the future). The B-theory answers in the negative: while we certainly experience now as special, and time as flowing, the B-theory denies that what is going on here is that we are detecting objective features of reality in a way that corresponds transparently to how those features are in themselves. The flow of time and the now are not objective features of reality; they are merely features of our experience. By combining answers to our first and second questions we arrive at positions on the metaphysics of time such as: [ 26 ]

  • the block universe view: eternalism + B-theory
  • the moving spotlight view: eternalism + A-theory
  • the presentist view: nowism + A-theory
  • the growing block view: now-and-then-ism + A-theory.

So much for positions on time itself. Now for some views on temporal objects: objects that exist in (and, in general, change over) time. Three-dimensionalism is the view that persons, tables and other temporal objects are three-dimensional entities. On this view, what you see in the mirror is a whole person. [ 27 ] Tomorrow, when you look again, you will see the whole person again. On this view, persons and other temporal objects are wholly present at every time at which they exist. Four-dimensionalism is the view that persons, tables and other temporal objects are four-dimensional entities, extending through three dimensions of space and one dimension of time. On this view, what you see in the mirror is not a whole person: it is just a three-dimensional temporal part of a person. Tomorrow, when you look again, you will see a different such temporal part. Say that an object persists through time if it is around at some time and still around at a later time. Three- and four-dimensionalists agree that (some) objects persist, but they differ over how objects persist. According to three-dimensionalists, objects persist by enduring : an object persists from t 1 to t 2 by being wholly present at t 1 and t 2 and every instant in between. According to four-dimensionalists, objects persist by perduring : an object persists from t 1 to t 2 by having temporal parts at t 1 and t 2 and every instant in between. Perduring can be usefully compared with being extended in space: a road extends from Melbourne to Sydney not by being wholly located at every point in between, but by having a spatial part at every point in between.

It is natural to combine three-dimensionalism with presentism and four-dimensionalism with the block universe view—but other combinations of views are certainly possible.

Gödel (1949b [1990b]) argues from the possibility of time travel (more precisely, from the existence of solutions to the field equations of General Relativity in which there exist CTC’s) to the B-theory: that is, to the conclusion that there is no objective flow or passage of time and no objective now. Gödel begins by reviewing an argument from Special Relativity to the B-theory: because the notion of simultaneity becomes a relative one in Special Relativity, there is no room for the idea of an objective succession of “nows”. He then notes that this argument is disrupted in the context of General Relativity, because in models of the latter theory to date, the presence of matter does allow recovery of an objectively distinguished series of “nows”. Gödel then proposes a new model (Gödel 1949a [1990a]) in which no such recovery is possible. (This is the model that contains CTC’s.) Finally, he addresses the issue of how one can infer anything about the nonexistence of an objective flow of time in our universe from the existence of a merely possible universe in which there is no objectively distinguished series of “nows”. His main response is that while it would not be straightforwardly contradictory to suppose that the existence of an objective flow of time depends on the particular, contingent arrangement and motion of matter in the world, this would nevertheless be unsatisfactory. Responses to Gödel have been of two main kinds. Some have objected to the claim that there is no objective flow of time in his model universe (e.g. Savitt (2005); see also Savitt (1994)). Others have objected to the attempt to transfer conclusions about that model universe to our own universe (e.g. Earman (1995, 197–200); for a partial response to Earman see Belot (2005, §3.4)). [ 28 ]

Earlier we posed two questions:

Gödel’s argument is related to the second question. Let’s turn now to the first question. Godfrey-Smith (1980, 72) writes “The metaphysical picture which underlies time travel talk is that of the block universe [i.e. eternalism, in the terminology of the present entry], in which the world is conceived as extended in time as it is in space.” In his report on the Analysis problem to which Godfrey-Smith’s paper is a response, Harrison (1980, 67) replies that he would like an argument in support of this assertion. Here is an argument: [ 29 ]

A fundamental requirement for the possibility of time travel is the existence of the destination of the journey. That is, a journey into the past or the future would have to presuppose that the past or future were somehow real. (Grey, 1999, 56)

Dowe (2000, 442–5) responds that the destination does not have to exist at the time of departure: it only has to exist at the time of arrival—and this is quite compatible with non-eternalist views. And Keller and Nelson (2001, 338) argue that time travel is compatible with presentism:

There is four-dimensional [i.e. eternalist, in the terminology of the present entry] time-travel if the appropriate sorts of events occur at the appropriate sorts of times; events like people hopping into time-machines and disappearing, people reappearing with the right sorts of memories, and so on. But the presentist can have just the same patterns of events happening at just the same times. Or at least, it can be the case on the presentist model that the right sorts of events will happen, or did happen, or are happening, at the rights sorts of times. If it suffices for four-dimensionalist time-travel that Jennifer disappears in 2054 and appears in 1985 with the right sorts of memories, then why shouldn’t it suffice for presentist time-travel that Jennifer will disappear in 2054, and that she did appear in 1985 with the right sorts of memories?

Sider (2005) responds that there is still a problem reconciling presentism with time travel conceived in Lewis’s way: that conception of time travel requires that personal time is similar to external time—but presentists have trouble allowing this. Further contributions to the debate whether presentism—and other versions of the A-theory—are compatible with time travel include Monton (2003), Daniels (2012), Hall (2014) and Wasserman (2018) on the side of compatibility, and Miller (2005), Slater (2005), Miller (2008), Hales (2010) and Markosian (2020) on the side of incompatibility.

Leibniz’s Law says that if x = y (i.e. x and y are identical—one and the same entity) then x and y have exactly the same properties. There is a superficial conflict between this principle of logic and the fact that things change. If Bill is at one time thin and at another time not so—and yet it is the very same person both times—it looks as though the very same entity (Bill) both possesses and fails to possess the property of being thin. Three-dimensionalists and four-dimensionalists respond to this problem in different ways. According to the four-dimensionalist, what is thin is not Bill (who is a four-dimensional entity) but certain temporal parts of Bill; and what is not thin are other temporal parts of Bill. So there is no single entity that both possesses and fails to possess the property of being thin. Three-dimensionalists have several options. One is to deny that there are such properties as ‘thin’ (simpliciter): there are only temporally relativised properties such as ‘thin at time t ’. In that case, while Bill at t 1 and Bill at t 2 are the very same entity—Bill is wholly present at each time—there is no single property that this one entity both possesses and fails to possess: Bill possesses the property ‘thin at t 1 ’ and lacks the property ‘thin at t 2 ’. [ 30 ]

Now consider the case of a time traveller Ben who encounters his younger self at time t . Suppose that the younger self is thin and the older self not so. The four-dimensionalist can accommodate this scenario easily. Just as before, what we have are two different three-dimensional parts of the same four-dimensional entity, one of which possesses the property ‘thin’ and the other of which does not. The three-dimensionalist, however, faces a problem. Even if we relativise properties to times, we still get the contradiction that Ben possesses the property ‘thin at t ’ and also lacks that very same property. [ 31 ] There are several possible options for the three-dimensionalist here. One is to relativise properties not to external times but to personal times (Horwich, 1975, 434–5); another is to relativise properties to spatial locations as well as to times (or simply to spacetime points). Sider (2001, 101–6) criticises both options (and others besides), concluding that time travel is incompatible with three-dimensionalism. Markosian (2004) responds to Sider’s argument; [ 32 ] Miller (2006) also responds to Sider and argues for the compatibility of time travel and endurantism; Gilmore (2007) seeks to weaken the case against endurantism by constructing analogous arguments against perdurantism. Simon (2005) finds problems with Sider’s arguments, but presents different arguments for the same conclusion; Effingham and Robson (2007) and Benovsky (2011) also offer new arguments for this conclusion. For further discussion see Wasserman (2018) and Effingham (2020). [ 33 ]

We have seen arguments to the conclusions that time travel is impossible, improbable and inexplicable. Here’s an argument to the conclusion that backwards time travel simply will not occur. If backwards time travel is ever going to occur, we would already have seen the time travellers—but we have seen none such. [ 34 ] The argument is a weak one. [ 35 ] For a start, it is perhaps conceivable that time travellers have already visited the Earth [ 36 ] —but even granting that they have not, this is still compatible with the future actuality of backwards time travel. First, it may be that time travel is very expensive, difficult or dangerous—or for some other reason quite rare—and that by the time it is available, our present period of history is insufficiently high on the list of interesting destinations. Second, it may be—and indeed existing proposals in the physics literature have this feature—that backwards time travel works by creating a CTC that lies entirely in the future: in this case, backwards time travel becomes possible after the creation of the CTC, but travel to a time earlier than the time at which the CTC is created is not possible. [ 37 ]

  • Adams, Robert Merrihew, 1997, “Thisness and time travel”, Philosophia , 25: 407–15.
  • Arntzenius, Frank, 2006, “Time travel: Double your fun”, Philosophy Compass , 1: 599–616. doi:10.1111/j.1747-9991.2006.00045.x
  • Asimov, Isaac, 1995 [2003], Gold: The Final Science Fiction Collection , New York: Harper Collins.
  • Baron, Sam and Colyvan, Mark, 2016, “Time enough for explanation”, Journal of Philosophy , 113: 61–88.
  • Belot, Gordon, 2005, “Dust, time and symmetry”, British Journal for the Philosophy of Science , 56: 255–91.
  • Benovsky, Jiri, 2011, “Endurance and time travel”, Kriterion , 24: 65–72.
  • Berkovitz, Joseph, 2001, “On chance in causal loops”, Mind , 110: 1–23.
  • Black, Max, 1956, “Why cannot an effect precede its cause?”, Analysis , 16: 49–58.
  • Brier, Bob, 1973, “Magicians, alarm clocks, and backward causation”, Southern Journal of Philosophy , 11: 359–64.
  • Carlson, Erik, 2005, “A new time travel paradox resolved”, Philosophia , 33: 263–73.
  • Carroll, John W., 2010, “Context, conditionals, fatalism, time travel, and freedom”, in Time and Identity , Joseph Keim Campbell, Michael O’Rourke, and Harry S. Silverstein, eds., Cambridge MA: MIT Press, 79–93.
  • Craig, William L., 1997, “Adams on actualism and presentism”, Philosophia , 25: 401–5.
  • Daniels, Paul R., 2012, “Back to the present: Defending presentist time travel”, Disputatio , 4: 469–84.
  • Deutsch, David and Lockwood, Michael, 1994, “The quantum physics of time travel”, Scientific American , 270(3): 50–6.
  • Dowe, Phil, 2000, “The case for time travel”, Philosophy , 75: 441–51.
  • –––, 2001, “Causal loops and the independence of causal facts”, Philosophy of Science , 68: S89–S97.
  • –––, 2003, “The coincidences of time travel”, Philosophy of Science , 70: 574–89.
  • Dummett, Michael, 1964, “Bringing about the past”, Philosophical Review , 73: 338–59.
  • Dwyer, Larry, 1977, “How to affect, but not change, the past”, Southern Journal of Philosophy , 15: 383–5.
  • Earman, John, 1995, Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes , New York: Oxford University Press.
  • Effingham, Nikk, 2020, Time Travel: Probability and Impossibility , Oxford: Oxford University Press.
  • Effingham, Nikk and Robson, Jon, 2007, “A mereological challenge to endurantism”, Australasian Journal of Philosophy , 85: 633–40.
  • Ehring, Douglas, 1997, “Personal identity and time travel”, Philosophical Studies , 52: 427–33.
  • Elliott, Katrina, 2019, “How to Know That Time Travel Is Unlikely Without Knowing Why”, Pacific Philosophical Quarterly , 100: 90–113.
  • Fulmer, Gilbert, 1980, “Understanding time travel”, Southwestern Journal of Philosophy , 11: 151–6.
  • Gilmore, Cody, 2007, “Time travel, coinciding objects, and persistence”, in Oxford Studies in Metaphysics , Dean W. Zimmerman, ed., Oxford: Clarendon Press, vol. 3, 177–98.
  • Goddu, G.C., 2003, “Time travel and changing the past (or how to kill yourself and live to tell the tale)”, Ratio , 16: 16–32.
  • –––, 2007, “Banana peels and time travel”, Dialectica , 61: 559–72.
  • Gödel, Kurt, 1949a [1990a], “An example of a new type of cosmological solutions of Einstein’s field equations of gravitation”, in Kurt Gödel: Collected Works (Volume II), Solomon Feferman, et al. (eds.), New York: Oxford University Press, 190–8; originally published in Reviews of Modern Physics , 21 (1949): 447–450.
  • –––, 1949b [1990b], “A remark about the relationship between relativity theory and idealistic philosophy”, in Kurt Gödel: Collected Works (Volume II), Solomon Feferman, et al. (eds.), New York: Oxford University Press, 202–7; originally published in P. Schilpp (ed.), Albert Einstein: Philosopher-Scientist , La Salle: Open Court, 1949, 555–562.
  • Godfrey-Smith, William, 1980, “Travelling in time”, Analysis , 40: 72–3.
  • Gorovitz, Samuel, 1964, “Leaving the past alone”, Philosophical Review , 73: 360–71.
  • Grey, William, 1999, “Troubles with time travel”, Philosophy , 74: 55–70.
  • Hafele, J. C. and Keating, Richard E., 1972a, “Around-the-world atomic clocks: Observed relativistic time gains”, Science , 177: 168–70.
  • –––, 1972b, “Around-the-world atomic clocks: Predicted relativistic time gains”, Science , 177: 166–8.
  • Hales, Steven D., 2010, “No time travel for presentists”, Logos & Episteme , 1: 353–60.
  • Hall, Thomas, 2014, “In Defense of the Compossibility of Presentism and Time Travel”, Logos & Episteme , 2: 141–59.
  • Hanley, Richard, 2004, “No end in sight: Causal loops in philosophy, physics and fiction”, Synthese , 141: 123–52.
  • Harrison, Jonathan, 1980, “Report on analysis ‘problem’ no. 18”, Analysis , 40: 65–9.
  • Hawking, S.W., 1992, “Chronology protection conjecture”, Physical Review D , 46: 603–11.
  • Holt, Dennis Charles, 1981, “Time travel: The time discrepancy paradox”, Philosophical Investigations , 4: 1–16.
  • Horacek, David, 2005, “Time travel in indeterministic worlds”, Monist (Special Issue on Time Travel), 88: 423–36.
  • Horwich, Paul, 1975, “On some alleged paradoxes of time travel”, Journal of Philosophy , 72: 432–44.
  • –––, 1987, Asymmetries in Time: Problems in the Philosophy of Science , Cambridge MA: MIT Press.
  • Ismael, J., 2003, “Closed causal loops and the bilking argument”, Synthese , 136: 305–20.
  • Keller, Simon and Nelson, Michael, 2001, “Presentists should believe in time-travel”, Australasian Journal of Philosophy , 79: 333–45.
  • Kiourti, Ira, 2008, “Killing baby Suzy”, Philosophical Studies , 139: 343–52.
  • Le Poidevin, Robin, 2003, Travels in Four Dimensions: The Enigmas of Space and Time , Oxford: Oxford University Press.
  • –––, 2005, “The Cheshire Cat problem and other spatial obstacles to backwards time travel”, Monist (Special Issue on Time Travel), 88: 336–52.
  • Lewis, David, 1976, “The paradoxes of time travel”, American Philosophical Quarterly , 13: 145–52.
  • Loss, Roberto, 2015, “How to Change the Past in One-Dimensional Time”, Pacific Philosophical Quarterly , 96: 1–11.
  • Luminet, Jean-Pierre, 2011, “Time, topology, and the twin paradox”, in The Oxford Handbook of Philosophy of Time , Craig Callender (ed.), Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199298204.003.0018
  • Markosian, Ned, 2004, “Two arguments from Sider’s Four-Dimensionalism ”, Philosophy and Phenomenological Research , 68: 665–73.
  • Markosian, Ned, 2020, “The Dynamic Theory of Time and Time Travel to the Past”, Disputatio , 12: 137–65.
  • Maudlin, Tim, 2012, Philosophy of Physics: Space and Time , Princeton: Princeton University Press.
  • Meiland, Jack W., 1974, “A two-dimensional passage model of time for time travel”, Philosophical Studies , 26: 153–73.
  • Mellor, D.H., 1998, Real Time II , London: Routledge.
  • Meyer, Ulrich, 2012, “Explaining causal loops”, Analysis , 72: 259–64.
  • Miller, Kristie, 2005, “Time travel and the open future”, Disputatio , 1: 223–32.
  • –––, 2006, “Travelling in time: How to wholly exist in two places at the same time”, Canadian Journal of Philosophy , 36: 309–34.
  • –––, 2008, “Backwards causation, time, and the open future”, Metaphysica , 9: 173–91.
  • Monton, Bradley, 2003, “Presentists can believe in closed timelike curves”, Analysis , 63: 199–202.
  • –––, 2009, “Time travel without causal loops”, Philosophical Quarterly , 59: 54–67.
  • Nerlich, Graham, 1981, “Can time be finite?”, Pacific Philosophical Quarterly , 62: 227–39.
  • Ney, S.E., 2000, “Are grandfathers an endangered species?”, Journal of Philosophical Research , 25: 311–21.
  • Price, Huw, 1996, Time’s Arrow & Archimedes’ Point: New Directions for the Physics of Time , New York: Oxford University Press.
  • Putnam, Hilary, 1975, “It ain’t necessarily so”, in Mathematics, Matter and Method , Cambridge: Cambridge University Press, vol. 1 of Philosophical Papers , 237–49.
  • Reinganum, Marc R., 1986, “Is time travel impossible? A financial proof”, Journal of Portfolio Management , 13: 10–2.
  • Riggs, Peter J., 1991, “A critique of Mellor’s argument against ‘backwards’ causation”, British Journal for the Philosophy of Science , 42: 75–86.
  • –––, 1997, “The principal paradox of time travel”, Ratio , 10: 48–64.
  • Savitt, Steven, 1994, “The replacement of time”, Australasian Journal of Philosophy , 74: 463–73.
  • –––, 2005, “Time travel and becoming”, Monist (Special Issue on Time Travel), 88: 413–22.
  • Sider, Theodore, 2001, Four-Dimensionalism: An Ontology of Persistence and Time , Oxford: Clarendon Press.
  • –––, 2002, “Time travel, coincidences and counterfactuals”, Philosophical Studies , 110: 115–38.
  • –––, 2004, “Replies to Gallois, Hirsch and Markosian”, Philosophy and Phenomenological Research , 68: 674–87.
  • –––, 2005, “Traveling in A- and B- time”, Monist (Special Issue on Time Travel), 88: 329–35.
  • Simon, Jonathan, 2005, “Is time travel a problem for the three-dimensionalist?”, Monist (Special Issue on Time Travel), 88: 353–61.
  • Slater, Matthew H., 2005, “The necessity of time travel (on pain of indeterminacy)”, Monist (Special Issue on Time Travel), 88: 362–9.
  • Smart, J.J.C., 1963, “Is time travel possible?”, Journal of Philosophy , 60: 237–41.
  • Smeenk, Chris and Wüthrich, Christian, 2011, “Time travel and time machines”, in The Oxford Handbook of Philosophy of Time , Craig Callender (ed.), Oxford: Oxford University Press, online ed. doi:10.1093/oxfordhb/9780199298204.003.0021
  • Smith, Joseph Wayne, 1985, “Time travel and backward causation”, Cogito , 3: 57–67.
  • Smith, Nicholas J.J., 1997, “Bananas enough for time travel?”, British Journal for the Philosophy of Science , 48: 363–89.
  • –––, 1998, “The problems of backward time travel”, Endeavour , 22(4): 156–8.
  • –––, 2004, “Review of Robin Le Poidevin Travels in Four Dimensions: The Enigmas of Space and Time ”, Australasian Journal of Philosophy , 82: 527–30.
  • –––, 2005, “Why would time travellers try to kill their younger selves?”, Monist (Special Issue on Time Travel), 88: 388–95.
  • –––, 2011, “Inconsistency in the A-theory”, Philosophical Studies , 156: 231–47.
  • –––, 2015, “Why time travellers (still) cannot change the past”, Revista Portuguesa de Filosofia , 71: 677–94.
  • –––, 2017, “I’d do anything to change the past (but I can’t do ‘that’)”, American Philosophical Quarterly , 54: 153–68.
  • van Inwagen, Peter, 2010, “Changing the past”, in Oxford Studies in Metaphysics (Volume 5), Dean W. Zimmerman (ed.), Oxford: Oxford University Press, 3–28.
  • Vihvelin, Kadri, 1996, “What time travelers cannot do”, Philosophical Studies , 81: 315–30.
  • Vranas, Peter B.M., 2005, “Do cry over spilt milk: Possibly you can change the past”, Monist (Special Issue on Time Travel), 88: 370–87.
  • –––, 2009, “Can I kill my younger self? Time travel and the retrosuicide paradox”, Pacific Philosophical Quarterly , 90: 520–34.
  • –––, 2010, “What time travelers may be able to do”, Philosophical Studies , 150: 115–21.
  • Wasserman, Ryan, 2018, Paradoxes of Time Travel , Oxford: Oxford University Press.
  • Williams, Donald C., 1951, “The myth of passage”, Journal of Philosophy , 48: 457–72.
  • Wright, John, 2006, “Personal identity, fission and time travel”, Philosophia , 34: 129–42.
  • Yourgrau, Palle, 1999, Gödel Meets Einstein: Time Travel in the Gödel Universe , Chicago: Open Court.
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Time Travel , entry by Joel Hunter (Truckee Meadows Community College) in the Internet Encyclopedia of Philosophy .

causation: backward | free will: divine foreknowledge and | identity: over time | location and mereology | temporal parts | time | time machines | time travel: and modern physics

Copyright © 2024 by Nicholas J.J. Smith < nicholas . smith @ sydney . edu . au >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

National Geographic content straight to your inbox—sign up for our popular newsletters here

Time travel for travelers? It’s tricky.

Scientific theories suggest it’s possible to travel through time. But the reality isn’t so clear.

A photo illustration of Robot Restaurant in Tokyo.

Time travel has fascinated scientists and writers for at least 125 years. The concept feels especially intriguing now, when physical travel is limited. Here, a photo illustration of Tokyo’s Robot Restaurant captures the idea of speeding through time.

I’m stuck at home, you’re stuck at home, we’re all stuck at home. Jetting off to some fun-filled destination like we used to might not be in the cards for a little while yet. But what about travelling through time? And not just the boring way, where we wait for the future to arrive one second at a time. What if you could zip through time at will, travelling forward to the future or backward to the past as easily as pushing buttons on the dashboard of a souped-up DeLorean, just like in the movie Back to the Future ?

Time travel has been a fantasy for at least 125 years. H.G. Wells penned his groundbreaking novel, The Time Machine , in 1895, and it’s something that physicists and philosophers have been writing serious papers about for almost a century.

What really kick-started scientific investigations into time travel was the notion, dating to the closing years of the 19th century, that time could be envisioned as a dimension, just like space. We can move easily enough through space, so why not time?

A photo illustration of Tokyu Plaza.

At the end of the 19th century, scientists thought of time as a dimension like space, where travelers can go anywhere they want. This photo illustration of Tokyu Plaza in Tokyo’s Omotesando Harajuku evokes the feeling of visiting endless destinations.

“In space, you can go wherever you want, so maybe in time you can similarly go anywhere you want,” says Nikk Effingham, a philosopher at the University of Birmingham in the United Kingdom . “From there, it’s a short step to time machines.”

( Why are people obsessed with time travel? Best-selling author James Gleick has some ideas .)

Dueling theories

Wells was a novelist, not a physicist, but physics would soon catch up. In 1905, Albert Einstein published the first part of his relativity theory, known as special relativity . In it, space and time are malleable; measurements of both space and time depend on the relative speed of the person doing the measuring.

A few years later, the German mathematician Hermann Minkowski showed that, in Einstein’s theory, space and time could be thought of as two aspects of a single four-dimensional entity known as space-time . Then, in 1915, Einstein came up with the second part of his theory, known as general relativity . General relativity renders gravity in a new light: Instead of thinking of it as a force, general relativity describes gravity as a bending or warping of space-time.

But special relativity is enough to get us started in terms of moving through time. The theory “establishes that time is much more similar to space than we had previously thought,” says Clifford Johnson, a physicist at the University of Southern California. “So maybe everything we can do with space, we can do with time.”

Well, almost everything. Special relativity doesn’t give us a way of going back in time, but it does give us a way of going forward— and at a rate that you can actually control. In fact, thanks to special relativity, you can end up with two twins having different ages, the famous “twin paradox.”

Suppose you head off to the Alpha Centauri star system in your spaceship at a really high speed (something close to the speed of light), while your twin remains on Earth. When you come back home, you’ll find you’re now much younger than your twin. It’s counterintuitive, to say the least, but the physics, after more than a century, is rock solid.

“It is absolutely provable in special relativity that the astronaut who makes the journey, if they travel at very nearly the speed of light, will be much younger than their twin when they come back,” says Janna Levin, a physicist at Barnard College in New York . Interestingly, time appears to pass just as it always does for both twins; it’s only when they’re reunited that the difference reveals itself.

Maybe you were both in your 20s when the voyage began. When you come back, you look just a few years older than when you left, while your twin is perhaps now a grandparent. “My experience of the passage of time is utterly normal for me. My clocks tick at the normal rate, I age normally, movies run at the right pace,” says Levin. “I’m no further into my future than normal. But I’ve travelled into my twin’s future.”

( To study aging, scientist are looking to outer space .)

With general relativity, things really start to get interesting. In this theory, a massive object warps or distorts space and time. Perhaps you’ve seen diagrams or videos comparing this to the way a ball distorts a rubber sheet . One result is that, just as travelling at a high speed affects the rate at which time passes, simply being near a really heavy object—like a black hole —will affect one’s experience of time. (This trick was central to the plot of the 2014 film, Interstellar , in which Matthew McConaughey’s character spends time in the vicinity of a massive black hole. When he returns home, he finds that his young daughter is now elderly.)

A photo illustration created from inside Nakagin Capsule Tower.

To get around the “grandfather paradox,” some scientists theorize there could be multiple timelines. In these images of Nakagin Capsule Tower in Tokyo, Japan, time seems to pass at different rates.

But black holes are just the beginning. Physicists have also speculated about the implications of a much more exotic structure known as a wormhole . Wormholes, if they exist, could connect one location in space-time with another. An astronaut who enters a wormhole in the Andromeda Galaxy in the year 3000 might find herself emerging from the other end in our own galaxy, in the year 2000. But there’s a catch: While we have overwhelming evidence that black holes exist in nature—astronomers even photographed one last year—wormholes are far more speculative.

“You can imagine building a bridge from one region of space-time to another region of space-time,” explains Levin, “but it would require kinds of mass and energy that we don’t really know exist in reality, things like negative energy.” She says it’s “mathematically conceivable” that structures such as wormholes could exist, but they may not be part of physical reality.

There’s also the troubling question of what happens to our notions of cause and effect if backward time travel were possible. The most famous of these conundrums is the so-called “ grandfather paradox .” Suppose you travel back in time to when your grandfather was a young man. You kill him (perhaps by accident), which means your parent won’t be born, which means you won’t be born. Therefore, you won’t be able to travel through time and kill your grandfather.

Multiple timelines?

Over the years, physicists and philosophers have pondered various resolutions to the grandfather paradox. One possibility is that the paradox simply proves that no such journeys are possible; the laws of physics, somehow, must prevent backward time travel. This was the view of the late physicist Stephen Hawking , who called this rule the “ chronology protection conjecture .” (Mind you, he never specified the actual physics behind such a rule.)

But there are also other, more intriguing, solutions. Maybe backward time travel is possible, and yet time travelers can’t change the past, no matter how hard they try. Effingham, whose book Time Travel: Probability and Impossibility was published earlier this year, puts it this way: “You might shoot the wrong person, or you might change your mind. Or, you might shoot the person you think is your grandfather, but it turns out your grandmother had an affair with the milkman, and that’s who your grandfather was all along; you just didn’t know it.”

Which also means the much-discussed fantasy of killing Hitler before the outbreak of World War II is a non-starter. “It’s impossible because it didn’t happen,” says Fabio Costa, a theoretical physicist at the University of Queensland in Australia . “It’s not even a question. We know how history developed. There is no re-do.”

In fact, suggests Effingham, if you can’t change the past, then a time traveler probably can’t do anything . Your mere existence at a time in which you never existed would be a contradiction. “The universe doesn’t care whether the thing you’ve changed is that you’ve killed Hitler, or that you moved an atom from position A to position B,” Effingham says.

But all is not lost. The scenarios Effingham and Costa are imagining involve a single universe with a single “timeline.” But some physicists speculate that our universe is just one among many . If that’s the case, then perhaps time travelers who visit the past can do as they please, which would shed new light on the grandfather paradox.

( The Big Bang could have led to the creation of multiple universes, scientists say .)

“Maybe, for whatever reason, you decide to go back and commit this crime [of killing your grandfather], and so the world ‘branches off’ into two different realities,” says Levin. As a result, “even though you seem to be altering your past, you’re not really altering it; you’re creating a new history.” (This idea of multiple timelines lies at the heart of the Back to the Future movie trilogy. In contrast, in the movie 12 Monkeys , Bruce Willis’s character makes multiple journeys through time, but everything plays out along a single timeline.)

More work to be done

What everyone seems to agree on is that no one is building a time-travelling DeLorean or engineering a custom-built wormhole anytime soon. Instead, physicists are focusing on completing the work that Einstein began a century ago.

After more than 100 years, no one has figured out how to reconcile general relativity with the other great pillar of 20th century physics: quantum mechanics . Some physicists believe that a long-sought unified theory known as quantum gravity will yield new insight into the nature of time. At the very least, says Levin, it seems likely “that we need to go beyond just general relativity to understand time.”

Meanwhile, it’s no surprise that, like H.G. Wells, we continue to daydream about having the freedom to move through time just as we move through space. “Time is embedded in everything we do,” says Johnson. “It looms large in how we perceive the world. So being able to mess with time—I’m not surprised we’re obsessed with that, and fantasize about it.”

Related Topics

You may also like.

do time travel exist

Scared to scuba? Here are 5 reasons it’s finally time to learn.

do time travel exist

Step inside the factory where the NFL’s footballs are made

Limited time offer.

Get a FREE tote featuring 1 of 7 ICONIC PLACES OF THE WORLD

do time travel exist

The true history of Einstein's role in developing the atomic bomb

do time travel exist

The monarch butterfly’s spots may be its superpower

do time travel exist

What is a sonic boom—and is it dangerous?

do time travel exist

Scientists go on a quest for the ‘right’ way to cook pasta

do time travel exist

Who is Oppenheimer? The controversial man behind the atomic bomb

  • History & Culture
  • Photography
  • Environment
  • Paid Content

History & Culture

  • Women's History Month
  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

Expert Voices

Why time-traveling tachyons probably don't exist

clock icon and blue abstract motion background

Tachyons are hypothetical particles that always travel faster than the speed of light. Einstein showed that such particles would allow for communication back in time, which opens up all sorts of problems with a fundamental rule of the universe. While physicists haven't proved that tachyons can't exist, there's good reason to believe they don't.

The barrier that nothing with mass can travel at the speed of light isn't just an expression of the limitation of engineering or a representation of a failure of imagination. It's baked into the very laws of the universe, as expressed by Einstein's theory of special relativity .

Let's say you want to start traveling faster than the speed of light. You start from rest and give yourself a little nudge. Because you have mass, your nudge has to overcome a bit of inertia to get you going, but you eventually get going. You light up a rocket, for example, and you blast off.

Related: Why is the speed of light the way it is?

But once you're off the launchpad, you don't stop. You have some superadvanced engine that allows you to keep pushing, causing you to continue accelerating. At speeds much lower than the speed of light, everything makes sense: For every second you fire your engines, you get the same amount of acceleration and the same boost in your velocity.

But as you approach the speed of light, something funny starts to happen. The same amount of energy put into your engines starts giving you less and less acceleration, so you get less velocity bang for your buck. Despite working your engines to the extreme, you find yourself inching closer to the speed of light but never reaching it. At some point, you realize that to achieve light speed, you need to put an infinite amount of energy into your engines — which you don't have.

The problem here is that energy is mass, as given by E = mc^2. The faster you move, the more kinetic energy you have, which means you are literally heavier the faster you go. As you approach the speed of light, your mass goes to infinity, so it takes an infinite amount of rocket power to make it to the speed of light.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

The tachyon workaround

But those rules apply to objects with mass starting below the speed of light. Massless objects, like light itself, automatically travel at light speed, never slowing down or speeding up. In 1967, building on work going back decades, physicist Gerald Feinberg proposed a new class of particle: objects with "imaginary mass." ("Imaginary" here refers to the mathematical term for the square root of -1.) These particles, which he called tachyons , would never travel slower than the speed of light. In fact, they would be forced to always go above light speed and would have just as much difficulty slowing down to light speed as we do trying to accelerate to it.

Feinberg wasn't the first to consider faster-than-light particles, but he was the one to coin our word for them. Einstein toyed with the idea but found that such particles violated a central rule of the universe: causality.

Causality is so fundamental that it underlies everything we understand about the workings of the universe. Put simply, causality states that causes must come before effects. I have to text you before your phone beeps, I have to put a piece of cheese in my mouth before I can eat it, and so on.

Causing trouble

But tachyons are capable of violating causality. To see how, let's set up a little thought experiment. I'm sitting on Earth while you're having some grand adventure out in the universe. I want to send you a signal with tachyons, so I fire up my tachyon transmitter and beam off a message.

From my perspective, the tachyons race away from me at faster than the speed of light in your direction. So far, so good.

If you're standing perfectly still, then eventually, the tachyon will reach you in less time than it would take for light to get there. You wouldn't be able to see the tachyon coming until it already passed you, which is still no big deal. If you had a telescope pointed at me, you would receive the tachyon before seeing the image of me pressing the button to send it. Curious, but still no huge problem.

— How does time work?

— 3 ways fundamental particles travel at (nearly) the speed of light

— The 'twin paradox' shows us what it really means for time to be relative  

The issue comes if you start moving. In relativity, from your perspective, you are standing still while Earth appears to be receding. This introduces time dilation: From your perspective, everything in the universe — including the action of me pressing the button —​​ slows down. In fact, if you're traveling fast enough, you could receive my tachyon and send a reply before I even hit the button in the first place; you can send a signal back in time.

Once you allow for sending signals back in time, you can play many fun games that create contradictions. You can have a message sent back to prevent your grandparents from meeting, which means you would never exist — but you need to exist to go back in time to prevent your grandparents from meeting. You can trigger an explosion that destroys the tachyon emitter before it receives your message. You can even destroy yourself in your own past.

And because we don't live in a universe where these contradictions and violations of causality happen, it seems unlikely that tachyons exist. 

Follow us on Twitter @Spacedotcom or on Facebook .  

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Paul Sutter

Paul M. Sutter is an astrophysicist at SUNY Stony Brook and the Flatiron Institute in New York City. Paul received his PhD in Physics from the University of Illinois at Urbana-Champaign in 2011, and spent three years at the Paris Institute of Astrophysics, followed by a research fellowship in Trieste, Italy, His research focuses on many diverse topics, from the emptiest regions of the universe to the earliest moments of the Big Bang to the hunt for the first stars. As an "Agent to the Stars," Paul has passionately engaged the public in science outreach for several years. He is the host of the popular "Ask a Spaceman!" podcast, author of "Your Place in the Universe" and "How to Die in Space" and he frequently appears on TV — including on The Weather Channel, for which he serves as Official Space Specialist.

NASA gets $25.4 billion in White House's 2025 budget request

'Interstellar meteor' vibrations actually caused by a truck, study suggests

Overlooked Apollo data from the 1970s reveals huge record of 'hidden' moonquakes

  • Pentcho Valev These are all conclusions deduced, validly or invalidly, from Einstein's 1905 constant-speed-of-light postulate stating that the speed of light is independent of the speed of the light source. Actually, the speed of light does depend on the speed of the source, as posited by Newton's theory. Einstein "borrowed" the false constancy from the nonexistent ether: Einstein: "I introduced the principle of the constancy of the velocity of light, which I borrowed from H. A. Lorentz's theory of the stationary luminiferous ether..." Quoted in Wikipedia Reply
  • Robert Lucien Howe Was expecting the article to fall into one of Special Relativities catch pits, but everything said looks correct. It still has to be said though (and its not said often enough) that all predictions made by the theory about physics above the speed of light are still basically speculation. There is a disjunction at the speed of light so that the current mathematical rules we know may apply or may not. I have worked on imaginary numbers (within computational logic) and believe that imaginary values might always add up to net zero. - From that photons could be described pretty accurately as having imaginary & net zero mass. Zero mass gives you zero inertia which equates to infinite speed and in reality limits at what we know as the speed of light. My own prediction is that taychons carrying reverse causality enter or exist in our STL universe all the time but they are quantum objects and don't generally carry useful information. Dark matter for instance might have an imaginary or negative mass.. Reply
  • rod "And because we don't live in a universe where these contradictions and violations of causality happen, it seems unlikely that tachyons exist." What? consider other reports on physical law and QM stuff on space.com. Does consciousness explain quantum mechanics? | Space.com Forums It does seem that there should be no causality to the universe today, quantum or macro level. Everything should just be random chaos starting from an area smaller than an electron where everything we see today, evolved from. Reply
  • rod Another observation after pondering this article a bit more. In BB cosmology, all redshifts 1.4 or larger are explained where 4D space is expanding faster than c velocity (comoving radial distances) and the inflation period where space expands some 10^20 or 10^21 faster than c velocity. Apparently, there is no causality violation here, a fundamental rule of the universe, yet the BB cosmology does not explain how causality was created or even when. So, in the methodology, I can rule out tachyons, but accept 4D space expanding much faster than light speed today in cosmology. Cool :) Here is something from the early part of this report. "Tachyons are hypothetical particles that always travel faster than the speed of light." The cosmological redshift answer for larger redshifts requires *travel faster than the speed of light* too. Reply
  • rod "And because we don't live in a universe where these contradictions and violations of causality happen, it seems unlikely that tachyons exist." Does this thinking apply to 4D space expanding faster than c velocity used in BB cosmology (and inflation) too? Reply
  • grigor60 I do not understand, why every time when we talk about the speed of light it is tightly coupled to time. As well, as I do not understand this statement > The issue comes if you start moving. In relativity, from your perspective, you are standing still while Earth appears to be receding. Maybe because of a lack of knowledge. Is there any good reason to think that the speed of photons differs from that of other objects? I see only one reason for this kind of statement, that we do not have the ability to measure processes faster than the speed of light, because right now we don have the ability to do measurements or collect information from observation faster than the speed of light, People cannot observe faster than the speed of light, moreover, we cannot measure the process of movement of something faster than the speed of light just because humans can't retrieve information faster than the speed of light. And so we believe that the speed of light is related to time, But it is connected only with time, where a starting point is a person, not the universe. I don’t understand why the fact that we can’t do something, due to purely technical limitations, becomes a postulate about how the universe works. Reply
  • Ian The argument around causality is broadly applicable to anything that permits superluminal travel or communication. Causality itself is not a principle that can be derived from either General Relativity or quantum theory- it is simple a phenomenon we observe in our everyday experience, and as such may be an illusion derived from the way we perceive reality. Even if causality is taken to be a real physical principle it doesn't preclude the existence of tachyons, since causality issues only arise if it's also possible to somehow use them to exchange information with the slower-than-light world. Quantum entanglement also creates issues with time because observing the spin of one entangled particle instantly determines that of the other one, in all reference frames. It doesn't create a causality problem though, because the phenomenon can't be used to exchange information. Reply
grigor60 said: I do not understand, why every time when we talk about the speed of light it is tightly coupled to time. As well, as I do not understand this statement > The issue comes if you start moving. In relativity, from your perspective, you are standing still while Earth appears to be receding. Maybe because of a lack of knowledge. Is there any good reason to think that the speed of photons differs from that of other objects? I see only one reason for this kind of statement, that we do not have the ability to measure processes faster than the speed of light, because right now we don have the ability to do measurements or collect information from observation faster than the speed of light, People cannot observe faster than the speed of light, moreover, we cannot measure the process of movement of something faster than the speed of light just because humans can't retrieve information faster than the speed of light. And so we believe that the speed of light is related to time, But it is connected only with time, where a starting point is a person, not the universe. I don’t understand why the fact that we can’t do something, due to purely technical limitations, becomes a postulate about how the universe works.
  • Hotseflats Uhm, surely sending the Tachyon back from your moving point of view will make it seem from your perspective that the Tachyon will reach Earth before the button is pushed. In reality, time on Earth is still moving forward, whilst the Tachyon is travelling however fast it goes, as long as it is not infinity. And from Earth's perspective the Tachyon will arrive at a future point in time, leaving causality in tact. I really think the world of physics is having a collective brain fart, starting with mister Einstein. Reply
  • View All 9 Comments

Most Popular

By Robert Lea March 27, 2024

By Mike Wall March 27, 2024

By Daisy Dobrijevic March 27, 2024

By Jamie Carter March 27, 2024

By Robert Lea March 26, 2024

By Sharmila Kuthunur March 26, 2024

By Nicoletta Lanese March 26, 2024

By Jeff Spry March 26, 2024

By Robert Z. Pearlman March 26, 2024

By Harry Baker March 26, 2024

  • 2 Supermassive black hole’s mysterious hiccups' likely caused by neighboring black hole's 'punches'
  • 3 'Vampire' neutron star blasts are related to jets traveling at near-light speeds
  • 4 Tragic Baltimore bridge collapse aftermath seen from space (satellite photos)
  • 5 NASA is super stoked for the 2024 total solar eclipse and hopes you are, too.

Scientific Progress and Innovation in Niiniluoto's Philosophy

"glocal" level adaptation to climate change, openmind books, scientific anniversaries, water, the strangest liquid in the universe, featured author, latest book, does time really exist.

For anyone anxiously watching the clock while struggling to finish an exam, or rushing to catch a flight at the airport before the boarding gate closes, the question of whether time really exists may seem like a bad joke. But the truth is that humans have been pondering this question for at least 2,500 years, and so far no one has come up with an answer satisfactory to everyone. Things get even more complicated when physicists try to move towards that much-vaunted “theory of everything” that can encompass subatomic particles as well as big things. What usually happens is that, once scientists have worked out their equations, time is nowhere to be found. And if it’s not part of the fundamental fabric of the universe, how do we know it’s not something we’ve invented to explain what we don’t understand?

Around 500 BC, Heraclitus of Ephesus observed that, if we bathe twice in the same river , neither we nor the river are the same; according to the concept attributed to him by Plato, panta rei , “everything flows.” The philosophy of Heraclitus is based on the passage of time. But around the same time, Parmenides of Elea held a view that has traditionally been considered the opposite: nothing changes, everything remains. Both doctrines have inspired different views of time in Western thought in later centuries. Isaac Newton viewed the universe as an immense, inexorable clock that marked the passage of time as an absolute magnitude, something that existed independently of everything else. 

But in the 19th century, the physicist Ludwig Boltzmann wrote: “For the universe, the two directions of time are indistinguishable, just as in space there is no up and down.” Boltzmann’s view departed from time as an absolute in itself, a constant of the natural order of the universe. He implied that there is no objective direction of time, and that we invent it according to our perception, just as we call the direction towards the centre of the earth “down.” 

Time as an illusion

The great revolution in our idea of time began with Albert Einstein . In his general relativity he included time as another dimension in the deformable fabric of the universe that explains gravity, and in special relativity time also became elastic, dependent on the position and velocity of the observer, so that the concept of “now” became meaningless. Decades later, in a letter of condolence to the family of his friend Michele Besso, who had died shortly before, Einstein wrote that for physicists “the distinction between past, present and future is only a stubbornly persistent illusion.” This quote by the physicist has often been the subject of discussion between those who interpret it as a mere attempt to bring comfort and those who see a true scientific pronouncement on time as an illusion, even if the context was a simple personal letter. Be that as it may, Einstein’s vision led the philosopher Karl Popper to compare him to a modern Parmenides.

BBVA-OpenMind-Yanes-Existe el tiempo 1-Einstein escribió que para los físicos “la distinción entre pasado, presente y futuro es solo una ilusión obstinadamente persistente”. Crédito: Wikimedia Commons

In 1908, while Einstein was thinking deeply about curved time, the philosopher John McTaggart Ellis stirred up a debate that has lasted for more than a century, when he argued for the unreality of time. The advent of quantum mechanics added a new argument: in the world of big things we can still perceive an asymmetry, an “arrow of time,” an expression coined in 1927 by the astrophysicist Arthur Eddington, who verified Einstein’s gravity through observations during an eclipse. This arrow of time is understood in a thermodynamic sense, as the entropy of systems—their measure of disorder—increases in the direction of what we understand as the advance of the clock. But in the world of atoms, the laws of quantum mechanics are detached from time: they work either forwards or backwards, clockwise or counter-clockwise; they have no preferred direction. And just as matter and energy are constructed from the tiny elements that are the object of quantum study, where are the particles of time? Experience tells us that time emerges as we move away from the world of the atom into the world of large objects; but how does it emerge, if it is not formed from smaller units?

The space-time connection

What’s more, in the search for a theory that unifies the two hitherto separate theories of the large and the small, it is often the case that time is not present. An example is seen in Loop Quantum Gravity (LQG) theory; unlike its more popular competitor—string theory—which replaces particles with tiny linear strings in an already formed space-time, LQG constructs the tapestry of the universe from tiny loops of space-time, like pixels on a screen.

In 2018, the theoretical physicist and science populariser Carlo Rovelli, one of the creators and promoters of LQG, published The Order of Time (Penguin Random House), an acclaimed book in which he explained the timeless physics born of this theory. According to Rovelli, time emerges in the thermodynamic context, but it is an illusion born of our incomplete knowledge; it is not something that exists objectively. “Time is a derived concept, it is not something fundamental,” Rovelli summarises to OpenMind . “The arrow of time is nothing more than the entropy increase.” “We certainly have a common intuition about time that is contradicted by clear physical experiments,” he adds.

BBVA-OpenMind-Yanes-Existe el tiempo 2 - “Frente a todo lo que nos han dicho hasta ahora, podría resultar que el tiempo no existiera”, dice Kristie Miller, coautora del libro Out of Time. Crédito: Oxford University Press

But if Rovelli and other physicists argue that our understanding of time is illusory, other authors go further by leaving open the possibility that it does not exist at all. This is what philosophers Kristie Miller, Sam Baron and Jonathan Tallant argue in their new book Out of Time: A Philosophical Study of Timelessness (Oxford University Press, 2022).

Denial of the existence of time: science or mysticism?

“We say that time might not exist,” co-author Kristie Miller, co-director of The Centre for Time at the University of Sydney, tells OpenMind . “But the next claim is just that the various approaches to quantum gravity are ones which do not obviously show that there is time that emerges,” she adds. “So, the claim is that for all we have been told so far, it could turn out that there is no time.”

However, Miller and her collaborators provide a way out of this predicament: if time might not exist, we would still have causality, the notion that one thing causes another thing to come after it. And according to the authors, this, not time, could be a fundamental property of the universe. “The idea is that perhaps causation can play some of the roles that we usually take time to play,” says Miller. “It’s a good question whether we would end up with time but by another name! I’m pretty tempted by the idea that if we had anything that was sufficiently time-like, that it can do all the sorts of things that it seems as though time does, this would just be the discovery that that thing is time.”

No se puede falsar la existencia del tiempo, o probarse su inexistencia. Crédito: Wikimedia Commons.

But Rovelli is not convinced by this argument: “Causality is even less well defined by time,” he argues. For the physicist, there are notions of time and temporality in nature that make sense even without any reference to causality. Indeed, there is also no widespread consensus among physicists on time , which Rovelli says, “means different things in different contexts.” For some physicists , if it can be measured, quantified and defined mathematically, and if there are other variables that depend on it, that is enough to accept its existence. Miller, for her part, argues that this is not enough: “Until there is an explanation that makes us understand how time emerges from a timeless fundamental reality, we think more work is needed; and the book tries to suggest that this may be more difficult than previously thought.”

Some physicists have gone so far as to imply that denying the existence of time, or defining it only as an illusion, is in line with certain current pseudo-scientific or mystical currents that present themselves as a misrepresentation of Einstein’s words. After all, the fact is that the existence of time cannot be falsified, or its non-existence proven. Miller acknowledges that there are pseudosciences that deny time, but she distances herself from these proclamations: “We don’t take a stand on this,” she says.

Is time travel possible?

All of the above opens another interesting door into one of science fiction’s favourite terrains: if time were an illusion, or did not exist, where would that leave the possibility of time travel? Rovelli believes that LQG does not preclude the existence of what he calls “closed time-like trajectories in the universe”, but he thinks it is “extraordinarily unlikely that someone could arrive here remembering things that happened in our future.”

do time travel exist

Miller notes that something like what we mean by time travel would be possible as a kind of deviant causality, if “some causal arrows point in different directions than most of them do.” The philosopher posits: “something you do now, getting into the machine, would cause you to exist at a time that, given all the other causal arrows, would count as earlier.” In fact, she adds, there are theories about the direction of time that don’t require all these causal arrows to point in the same direction; it is sufficient that most of them do. And if there are such rogue arrows, then we would have our way to travel in time. However, building the machine would be even more complicated than trying to convince those who have closed the boarding gate on us that the existence of time, in physics and philosophy, is highly disputable.

Javier Yanes

Related publications.

  • Science Fiction Narratives and Future Studies
  • 5 Science Fiction Myths that are a Reality in Cybernetics - Kevin Warwick
  • Metaphysics of our Time: Digital Beings
  • Thousands of Biological Clocks Keep Time in the Human Body

More about Science

Environment, leading figures, mathematics, scientific insights, more publications about ventana al conocimiento (knowledge window), comments on this publication.

Morbi facilisis elit non mi lacinia lacinia. Nunc eleifend aliquet ipsum, nec blandit augue tincidunt nec. Donec scelerisque feugiat lectus nec congue. Quisque tristique tortor vitae turpis euismod, vitae aliquam dolor pretium. Donec luctus posuere ex sit amet scelerisque. Etiam sed neque magna. Mauris non scelerisque lectus. Ut rutrum ex porta, tristique mi vitae, volutpat urna.

Sed in semper tellus, eu efficitur ante. Quisque felis orci, fermentum quis arcu nec, elementum malesuada magna. Nulla vitae finibus ipsum. Aenean vel sapien a magna faucibus tristique ac et ligula. Sed auctor orci metus, vitae egestas libero lacinia quis. Nulla lacus sapien, efficitur mollis nisi tempor, gravida tincidunt sapien. In massa dui, varius vitae iaculis a, dignissim non felis. Ut sagittis pulvinar nisi, at tincidunt metus venenatis a. Ut aliquam scelerisque interdum. Mauris iaculis purus in nulla consequat, sed fermentum sapien condimentum. Aliquam rutrum erat lectus, nec placerat nisl mollis id. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Nam nisl nisi, efficitur et sem in, molestie vulputate libero. Quisque quis mattis lorem. Nunc quis convallis diam, id tincidunt risus. Donec nisl odio, convallis vel porttitor sit amet, lobortis a ante. Cras dapibus porta nulla, at laoreet quam euismod vitae. Fusce sollicitudin massa magna, eu dignissim magna cursus id. Quisque vel nisl tempus, lobortis nisl a, ornare lacus. Donec ac interdum massa. Curabitur id diam luctus, mollis augue vel, interdum risus. Nam vitae tortor erat. Proin quis tincidunt lorem.

Emojis as a Way to Resolve Conflicts at Work

Do you want to stay up to date with our new publications.

Receive the OpenMind newsletter with all the latest contents published on our website

OpenMind Books

  • The Search for Alternatives to Fossil Fuels
  • View all books

About OpenMind

Connect with us.

  • Keep up to date with our newsletter

10 Most Compelling Pieces Of Evidence That Prove Time Travel Exists

What we don't talk about when we talk about time travel.

What we talk about when we talk about time travel: going back to kill Hitler, Back To The Future, treading on butterflies causing irreparable damage to history, Doctor Who, whether or not it's ethical to use it to cheat on the lottery, and Bill & Ted's Excellent Adventure.

What we don't talk about when we talk about time travel: whether it actually exists. Or will exist. Or has existed. We don't know, this wibbly wobbly, timey wimey stuff kinda messes with our tenses a little.

The idea of being able to travel backwards or forwards through history has appeared in countless forms through pop culture, conversation, and daydreams for ages, but how come we don't discuss whether it'll actually ever be real? Does it just seem too beyond feasibility?

Well, we're here with good news! Not from the future, sadly, just in the grimly predictable present. A grimly predictable present that includes quantum physics, Higgs Bosons and other science-y things we don't quite understand but apparently have something to do with a conceivable way for us to travel through time. No less a genius than Stephen Hawking spent years looking for a reason that time travel couldn't exist, only to find the concept didn't contravene any laws of physics, eventually admitting "time travel may be possible, but it is not practical".

Plus, there's the fact that the history of time travel in our culture has frequently strayed into the non-fiction - so long as you're inclined to believe the possible crackpots that are discussing it - all of which adds up to some pretty compelling pieces of evidence that prove time travel is real.

Ten, in fact.

Tom Baker is the Comics Editor at WhatCulture! He's heard all the Doctor Who jokes, but not many about Randall and Hopkirk. He also blogs at http://communibearsilostate.wordpress.com/

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

GSA Logo

  • Explore sell to government
  • Ways you can sell to government
  • How to access contract opportunities
  • Conduct market research
  • Register your business
  • Certify as a small business
  • Become a schedule holder
  • Market your business
  • Research active solicitations
  • Respond to a solicitation
  • What to expect during the award process
  • Comply with contractual requirements
  • Handle contract modifications
  • Monitor past performance evaluations
  • Explore real estate
  • 3D-4D building information modeling
  • Art in architecture | Fine arts
  • Computer-aided design standards
  • Commissioning
  • Design excellence
  • Engineering
  • Project management information system
  • Spatial data management
  • Facilities operations
  • Smart buildings
  • Tenant services
  • Utility services
  • Water quality management
  • Explore historic buildings
  • Heritage tourism
  • Historic preservation policy, tools and resources
  • Historic building stewardship
  • Videos, pictures, posters and more
  • NEPA implementation
  • Courthouse program
  • Land ports of entry
  • Prospectus library
  • Regional buildings
  • Renting property
  • Visiting public buildings
  • Real property disposal
  • Reimbursable services (RWA)
  • Rental policy and procedures
  • Site selection and relocation
  • For businesses seeking opportunities
  • For federal customers
  • For workers in federal buildings
  • Explore policy and regulations
  • Acquisition management policy
  • Aviation management policy
  • Information technology policy
  • Real property management policy
  • Relocation management policy
  • Travel management policy
  • Vehicle management policy
  • Federal acquisition regulations
  • Federal management regulations
  • Federal travel regulations
  • GSA acquisition manual
  • Managing the federal rulemaking process
  • Explore small business
  • Explore business models
  • Research the federal market
  • Forecast of contracting opportunities
  • Events and contacts
  • Explore travel
  • Per diem rates
  • Transportation (airfare rates, POV rates, etc.)
  • State tax exemption
  • Travel charge card
  • Conferences and meetings
  • E-gov travel service (ETS)
  • Travel category schedule
  • Federal travel regulation
  • Travel policy
  • Explore technology
  • Cloud computing services
  • Cybersecurity products and services
  • Data center services
  • Hardware products and services
  • Professional IT services
  • Software products and services
  • Telecommunications and network services
  • Work with small businesses
  • Governmentwide acquisition contracts
  • MAS information technology
  • Software purchase agreements
  • Cybersecurity
  • Digital strategy
  • Emerging citizen technology
  • Federal identity, credentials, and access management
  • Mobile government
  • Technology modernization fund
  • Explore about us
  • Annual reports
  • Mission and strategic goals
  • Role in presidential transitions
  • Get an internship
  • Launch your career
  • Elevate your professional career
  • Discover special hiring paths
  • Events and training
  • Agency blog
  • Congressional testimony
  • GSA does that podcast
  • News releases
  • Leadership directory
  • Staff directory
  • Office of the administrator
  • Federal Acquisition Service
  • Public Buildings Service
  • Staff offices
  • Board of Contract Appeals
  • Office of Inspector General
  • Region 1 | New England
  • Region 2 | Northeast and Caribbean
  • Region 3 | Mid-Atlantic
  • Region 4 | Southeast Sunbelt
  • Region 5 | Great Lakes
  • Region 6 | Heartland
  • Region 7 | Greater Southwest
  • Region 8 | Rocky Mountain
  • Region 9 | Pacific Rim
  • Region 10 | Northwest/Arctic
  • Region 11 | National Capital Region
  • Per Diem Lookup

Privately owned vehicle (POV) mileage reimbursement rates

GSA has adjusted all POV mileage reimbursement rates effective January 1, 2024.

* Airplane nautical miles (NMs) should be converted into statute miles (SMs) or regular miles when submitting a voucher using the formula (1 NM equals 1.15077945 SMs).

For calculating the mileage difference between airports, please visit the U.S. Department of Transportation's Inter-Airport Distance website.

QUESTIONS: For all travel policy questions, email [email protected] .

Have travel policy questions? Use our ' Have a Question? ' site

PER DIEM LOOK-UP

1 choose a location.

Error, The Per Diem API is not responding. Please try again later.

No results could be found for the location you've entered.

Rates for Alaska, Hawaii, U.S. Territories and Possessions are set by the Department of Defense .

Rates for foreign countries are set by the State Department .

2 Choose a date

Rates are available between 10/1/2021 and 09/30/2024.

The End Date of your trip can not occur before the Start Date.

Traveler reimbursement is based on the location of the work activities and not the accommodations, unless lodging is not available at the work activity, then the agency may authorize the rate where lodging is obtained.

Unless otherwise specified, the per diem locality is defined as "all locations within, or entirely surrounded by, the corporate limits of the key city, including independent entities located within those boundaries."

Per diem localities with county definitions shall include "all locations within, or entirely surrounded by, the corporate limits of the key city as well as the boundaries of the listed counties, including independent entities located within the boundaries of the key city and the listed counties (unless otherwise listed separately)."

When a military installation or Government - related facility(whether or not specifically named) is located partially within more than one city or county boundary, the applicable per diem rate for the entire installation or facility is the higher of the rates which apply to the cities and / or counties, even though part(s) of such activities may be located outside the defined per diem locality.

IMAGES

  1. 10 Real Events That Prove Time Travellers Exist!

    do time travel exist

  2. Does time travel really exist?

    do time travel exist

  3. Finally, we have definitive proof that time travel exists

    do time travel exist

  4. 10 Photos That Can Prove Time Travel Exists

    do time travel exist

  5. Top 15 Theories That Prove Time Travel Actually Exists

    do time travel exist

  6. Does Time Travel Actually Exist?

    do time travel exist

VIDEO

  1. TIME TRAVEL EXIST #shorts

  2. Time travel, A Mystery |Mysterious island| Unbelievable Magic

  3. Can We Really Travel Through Time?

  4. DO YOU THANK TIME TRAVEL EXIST?

  5. Time-Traveler Shows a Photo From the Year 6,000

  6. If Time Travel Exist

COMMENTS

  1. Is Time Travel Possible?

    The Short Answer: Although humans can't hop into a time machine and go back in time, we do know that clocks on airplanes and satellites travel at a different speed than those on Earth. We all travel in time! We travel one year in time between birthdays, for example. And we are all traveling in time at approximately the same speed: 1 second per ...

  2. Time travel

    Time travel is the hypothetical activity of traveling into the past or future. ... As the absence of extraterrestrial visitors does not categorically prove they do not exist, so the absence of time travelers fails to prove time travel is physically impossible; ...

  3. Time travel could be possible, but only with parallel timelines

    Scientifically speaking, for time travel to exist, so must parallel timelines. This theory addresses the paradoxes that arise when studying the possibility of time travel. Time travel could be ...

  4. Is Time Travel Possible?

    Time traveling to the near future is easy: you're doing it right now at a rate of one second per second, and physicists say that rate can change. According to Einstein's special theory of ...

  5. Can we time travel? A theoretical physicist provides some answers

    The simplest answer is that time travel cannot be possible because if it was, we would already be doing it. One can argue that it is forbidden by the laws of physics, like the second law of ...

  6. Time travel

    And, as physicist Stephen Hawking pointed out in his book " Black Holes and Baby Universes" (Bantam, 1994), "The best evidence we have that time travel is not possible, and never will be, is that ...

  7. Paradox-Free Time Travel Is Theoretically Possible, Researchers Say

    According a new paper from researchers at the University of Queensland, even if time travel were possible, the paradox couldn't actually exist. Researchers ran the numbers and determined that even ...

  8. Will time travel ever be possible? Science behind curving space-time

    Is time travel possible? According to NASA, time travel is possible, just not in the way you might expect. Albert Einstein's theory of relativity says time and motion are relative to each other ...

  9. Is time travel even possible? An astrophysicist explains the science

    Scientists are trying to figure out if time travel is even theoretically possible. If it is, it looks like it would take a whole lot more knowledge and resources than humans have now to do it.

  10. The Great Debate: Could We Ever Travel through Time?

    You know there's a famous story about physicist Stephen Hawking, who invited time travelers to come to a party he was holding. The trick was the the party happened in 2009, but the invitation ...

  11. There's One Way Time Travel Could Be Possible, According to This

    One attempt at resolving time travel paradoxes is theoretical physicist Igor Dmitriyevich Novikov's self-consistency conjecture, which essentially states that you can travel to the past, but you cannot change it. According to Novikov, if I tried to destroy my time machine five minutes in the past, I would find that it is impossible to do so.

  12. Is Time Travel Even Possible?

    And we move through space in all directions just fine, and according to physics, travel through time should be just as possible. One way that people have looked into is via a wormhole—a shortcut ...

  13. The Scientific Possibilities of Time Travel

    Time and Relativity . Though referenced in H.G. Wells' The Time Machine (1895), the actual science of time travel didn't come into being until well into the twentieth century, as a side-effect of Albert Einstein's theory of general relativity (developed in 1915). Relativity describes the physical fabric of the universe in terms of a 4-dimensional spacetime, which includes three spatial ...

  14. Time Travel Probably Isn't Possible—Why Do We Wish It Were?

    Time travel exerts an irresistible pull on our scientific and storytelling imagination. Since H.G. Wells imagined that time was a fourth dimension —and Einstein confirmed it—the idea of time ...

  15. Can time travel survive a theory of everything?

    Nobody thinks that general relativity's time loops would be practical for time travel even if they are possible. For one thing, they might exist only under certain circumstances — the universe ...

  16. Physicist explains why time travel isn't possible

    Because the future doesn't yet exist, we can't travel into the future, he asserts. He argues, too, that going back in time is equally improbable, since to reverse time you would have to ...

  17. Time Travel Is Possible but Changing the Past Isn't, Study Says

    Dec 31, 2022, 9:13 AM PST. Doc Brown and Marty McFly in "Back to the Future." Universal Pictures. Time travel is possible based on the laws of physics, according to researchers. But time-travelers ...

  18. Time Travel and Modern Physics

    All of this has nothing to do with time travel. However, the impossibility of such set ups is what prevents us from enacting the rotation by 90 degrees that would create paradox in the time travel setting. ... So we have evidence that such constraints, whatever they are, do not in fact exist in our world. So we have evidence that there are no ...

  19. Time Travel

    Hence backwards time travel does not entail the occurrence of impossible events—and so the above objection is defused. 2.1 Can and Cannot ... 442-5) responds that the destination does not have to exist at the time of departure: it only has to exist at the time of arrival—and this is quite compatible with non-eternalist views. And Keller ...

  20. Time travel for travelers? It's tricky.

    Wormholes, if they exist, could connect one location in space-time with another. An astronaut who enters a wormhole in the Andromeda Galaxy in the year 3000 might find herself emerging from the ...

  21. Why time-traveling tachyons probably don't exist

    While physicists haven't proved that tachyons can't exist, there's good reason to believe they don't. The barrier that nothing with mass can travel at the speed of light isn't just an expression ...

  22. Does Time Exist? Really?

    Does Time Really Exist? For anyone anxiously watching the clock while struggling to finish an exam, or rushing to catch a flight at the airport before the boarding gate closes, the question of whether time really exists may seem like a bad joke. But the truth is that humans have been pondering this question for at least 2,500 years, and so far ...

  23. 10 Most Compelling Pieces Of Evidence That Prove Time Travel Exists

    No less a genius than Stephen Hawking spent years looking for a reason that time travel couldn't exist, only to find the concept didn't contravene any laws of physics, eventually admitting "time ...

  24. Privately owned vehicle (POV) mileage reimbursement rates

    Rate per mile. Airplane*. January 1, 2024. $1.76. If use of privately owned automobile is authorized or if no government-furnished automobile is available. January 1, 2024. $0.67. If government-furnished automobile is available. January 1, 2024.