• Mobile Site
  • Staff Directory
  • Advertise with Ars

Filter by topic

  • Biz & IT
  • Gaming & Culture

Front page layout

Some hope —

Finally, engineers have a clue that could help them save voyager 1, a new signal from humanity's most distant spacecraft could be the key to restoring it..

Stephen Clark - Mar 15, 2024 11:23 pm UTC

Artist's illustration of the Voyager 1 spacecraft.

It's been four months since NASA's Voyager 1 spacecraft sent an intelligible signal back to Earth, and the problem has puzzled engineers tasked with supervising the probe exploring interstellar space.

But there's a renewed optimism among the Voyager ground team based at NASA's Jet Propulsion Laboratory in California. On March 1, engineers sent a command up to Voyager 1—more than 15 billion miles (24 billion kilometers) away from Earth—to "gently prompt" one of the spacecraft's computers to try different sequences in its software package. This was the latest step in NASA's long-distance troubleshooting to try to isolate the cause of the problem preventing Voyager 1 from transmitting coherent telemetry data.

Cracking the case

Officials suspect a piece of corrupted memory inside the Flight Data Subsystem (FDS), one of three main computers on the spacecraft, is the most likely culprit for the interruption in normal communication. Because Voyager 1 is so far away, it takes about 45 hours for engineers on the ground to know how the spacecraft reacted to their commands—the one-way light travel time is about 22.5 hours.

The FDS collects science and engineering data from the spacecraft's sensors, then combines the information into a single data package, which goes through a separate component called the Telemetry Modulation Unit to beam it back to Earth through Voyager's high-gain antenna.

Engineers are almost entirely certain the problem is in the FDS computer. The communications systems onboard Voyager 1 appear to be functioning normally, and the spacecraft is sending a steady radio tone back to Earth, but there's no usable data contained in the signal. This means engineers know Voyager 1 is alive, but they have no insight into what part of the FDS memory is causing the problem.

But Voyager 1 responded to the March 1 troubleshooting command with something different from what engineers have seen since this issue first appeared on November 14.

"The new signal was still not in the format used by Voyager 1 when the FDS is working properly, so the team wasn’t initially sure what to make of it," NASA said in an update Wednesday. "But an engineer with the agency’s Deep Space Network, which operates the radio antennas that communicate with both Voyagers and other spacecraft traveling to the Moon and beyond, was able to decode the new signal and found that it contains a readout of the entire FDS memory."

Now, engineers are meticulously comparing each bit of code from the FDS memory readout to the memory readout Voyager 1 sent back to Earth before the issue arose in November. This, they hope, will allow them to find the root of the problem. But it will probably take weeks or months for the Voyager team to take the next step. They don't want to cause more harm.

"Using that information to devise a potential solution and attempt to put it into action will take time," NASA said.

This is perhaps the most serious ailment the spacecraft has encountered since its launch in 1977. Voyager 1 flew by Jupiter and Saturn before getting a kick from Saturn's gravity to speed into the outer solar system. In 2012, Voyager 1 entered interstellar space when it crossed the heliopause, where the solar wind, the stream of particles emanating from the Sun, push against a so-called galactic wind, the particles that populate the void between the stars.

Engineers have kept Voyager 1 and its twin, Voyager 2, alive for more than 46 years , overcoming technical problems that have doomed other space missions. Both probes face waning power from their nuclear batteries, and there are concerns about their thrusters aging and fuel lines becoming clogged, among other things. But each time there is a problem, ground teams have come up with a trick to keep the Voyagers going, often referencing binders of fraying blueprints and engineering documents from the spacecraft's design and construction nearly 50 years ago.

Suzanne Dodd, NASA's project manager for Voyager 1 and its twin, Voyager 2, recently told Ars that engineers would need to pull off their "biggest miracle" to restore Voyager 1 to normal operations. Now, Voyager's 1 voice from the sky has provided engineers with a clue that could help them realize this miracle.

reader comments

Channel ars technica.

NASA Logo

Interstellar Messengers

voyager 1 and 2 nasa

Voyager 1 and its twin Voyager 2 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. Voyager 1 reached the interstellar boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

Mission Type

Science Targets

Latest News

NASA’s Voyager Team Focuses on Software Patch, Thrusters

voyager 1 and 2 nasa

NASA’s Voyager Will Do More Science With New Power Strategy

voyager 1 and 2 nasa

Edward Stone Retires After 50 Years as NASA Voyager’s Project Scientist

voyager 1 and 2 nasa

Engineers Solve Data Glitch on NASA’s Voyager 1

voyager 1 and 2 nasa

Voyager, NASA’s Longest-Lived Mission, Logs 45 Years in Space

The Interstellar Mission

After completing the first in-depth reconnaissance of the outer planets, the twin Voyagers are on a new mission to chart the edge of interstellar space.

The Golden Record

The contents of the golden record were selected for NASA by a committee led by Carl Sagan of Cornell University.

The Spacecraft

The twin Voyagers are escaping our solar system in different directions at more than 3 astronomical units (AU) a year.

A close up of the golden record. The label says "To the makers of music - all worlds, all times."

The Pale Blue Dot

The behind-the-scenes story of the making of Voyager 1's iconic image of Earth as "a mote of dust suspended in a sunbeam."

Earth as a tiny bluish dot suspended in a grainy beam of light.

Discover More Topics From NASA

voyager 1 and 2 nasa

Our Solar System

voyager 1 and 2 nasa

Heliosphere

voyager 1 and 2 nasa

voyager 1 and 2 nasa

Interstellar Mission

The Voyager 2 spacecraft, which has been in operation since 1977 and is the only spacecraft to have ever visited Uranus and Neptune, has made its way to interstellar space, where its twin spacecraft, Voyager 1, has resided since August 2012.

Voyager 2 Foreground

Mission Statistics

Launch Date

Aug. 20, 1977

About the mission

The Voyager 2 spacecraft, which has been in operation since 1977 and is the only spacecraft to have ever visited Uranus and Neptune, has made its way to interstellar space, where its twin spacecraft, Voyager 1, has resided since August 2012. During its travels through the outer solar system, Voyager 2 visited all four gas giant planets, and also discovered and photographed many of the planets' moons.

The spacecraft's flyby of Neptune in 1989 set it on a course below the elliptic plane that eventually took it to interstellar space on November 5, 2018. In 1998, engineers switched off the spacecraft's nonessential instruments to conserve power. Data from at least some of the six instruments still in operation should be received until at least 2025.

Instruments

  • Imaging system
  • Infrared interferometer spectrometer
  • Ultraviolet spectrometer
  • Triaxial fluxgate magnetometer
  • Plasma spectrometer
  • Low-energy charged particles detectors
  • Cosmic Ray System (CRS)
  • Photopolarimeter System (PPS)
  • Plasma Wave System (PWS)

Mission Highlights

Nov. 5, 2018

Interstellar target graphic

Interactive 3D model of Voyager 2.View the full interactive experience at Eyes on the Solar System .

March 14, 2024

10 min read

Voyager 1’s Immortal Interstellar Requiem

NASA is reaching across more than 15 billion miles to rescue its malfunctioning Voyager 1 probe—but this hallowed interstellar mission can’t live forever

By Nadia Drake

Voyager spacecraft leaving Solar System. The spacecraft is in silhouette with the light from the distant sun shining through

An artist's concept of NASA's Voyager 1, the space agency's venerable and farthest-flung interplanetary probe.

Mark Garlick/Science Photo Library

In the fall of last year, one of NASA’s most venerable spacecraft started beaming home nonsense. Its usual string of 1’s and 0’s—binary code that collectively told of its journey into the unknown—became suddenly unintelligible.

Some 15 billion miles from Earth, beyond the protective bubble blown by the sun and in interstellar space, Voyager 1 was in trouble.

“We’d gone from having a conversation with Voyager, with the 1’s and 0’s containing science data, to just a dial tone,” says Linda Spilker , Voyager project scientist at NASA’s Jet Propulsion Laboratory (JPL).

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

Spilker joined JPL in 1977, the same year that NASA launched Voyager 1 and its twin, Voyager 2 , on what, in a way, was an endless odyssey: from Earth, to the outer solar system and ultimately to interstellar infinity . Today there are several billion people on Earth who have never taken a breath without the Voyagers in our sky, people who, like me, have only ever existed in a cosmos shared with these talkative twin spacecraft. But like people, spacecraft get old. They break down .

And all good things—and even great ones—must come to an end. After days, and weeks and then months of nothing but indecipherable binary babbling, Voyager 1’s earthbound stewards had to reckon with the idea that maybe, after more than 46 years, its time had at last run out.

The Voyager 1 team at JPL had traced the problem to the spacecraft’s Flight Data System, an onboard computer that parses and parcels engineering and science measurements for subsequent radio transmittal to Earth. One possibility was that a high-energy cosmic particle had struck Voyager 1 and caused a bit flip within the system’s memory — something that has happened more frequently as the craft navigates the hostile wilds of interstellar space. Normally, the team would simply ask the spacecraft for a memory readout, allowing its members to find and reset the errant bit.

“We’ve recovered from bit flips before. The problem this time is we don’t know where the bit flip is because we can’t see what the memory is,” says Suzanne Dodd , Voyager project manager at JPL, who, like Spilker, began her long career with work on the probes. “It’s the most serious issue we’ve had since I’ve been the project manager, and it’s scary because you lose communication with the spacecraft.”

Yesterday, the team announced a significant step in breaking through to Voyager 1. After months of stress and unsuccessful answers they have managed to decode at least a portion of the spacecraft’s gobbledygook, allowing them to (maybe) find a way to see what it has been trying to say.

“It’s an excellent development on Voyager,” says Joe Westlake , director of NASA’s heliophysics division, which oversees the mission.

In the time it will take you to read this story, Voyager 1 will have traversed approximately 10,000 miles of mostly empty space ; in the weeks it took me to report it, the probe traveled some 26 million miles. And since its communication first became garbled last November, the spacecraft has sailed another 10 light-minutes away from home. Voyager 1 and its twin are slipping away from us as surely as the passage of time itself. Sooner or later, these hallowed space-age icons will fall silent, becoming no more than distant memories.

And even among the space community, which of course loves all of its robotic explorers equally, the Voyagers are special. “They are incredibly important and much beloved spacecraft,” says Nicola Fox , NASA’s associate administrator for science. “Voyager 1 is a national treasure, along with Voyager 2 .”

As envisioned, the Voyager mission would exploit a once-in-175-year alignment of Jupiter, Saturn, Uranus and Neptune to slingshot through the solar system’s sparsely charted hinterlands. Legend has it that NASA’s administrator sold the project to President Richard Nixon by noting that the last time the planets were so favorably arranged, Thomas Jefferson was living in the White House. Outfitted with nuclear power sources, the Voyagers were built to last—in utter defiance of the adage that what must go up, must come down. Neither was ever intended to make planetfall again; instead they were bound for the stars. And now, nearly a half-century later, the pair have become the longest-lived and farthest-flung probes ever dispatched by humankind. (Voyager 1 is the front-runner, with its sibling trailing close behind.)

Spilker was straight out of college when she started working on the Voyagers, eager to see the outer solar system through their robotic eyes as they surfed the rare celestial alignment. “I had a telescope in third grade that I used to look at Jupiter and Saturn,” she says. “I wanted to get up really close and get a look at what these planets look like.”

Between 1979 and 1981, Voyager 1 and Voyager 2 zipped by the gas giants , returning stunning images of banded Jupiter and buttery Saturn and their bewildering collection of moons. Voyager 2 went on to scrutinize the ice giants: Uranus in 1986 and Neptune in 1989. These were the first and only times anyone had seen each of these bluish ringed worlds up close.

“They were small little pinpoints of light, and now you’re flying close,” Spilker says. “And you see the cliffs of Miranda”—a bizarre Uranian moon—“and Triton, with active geysers going off.” (Nobody had expected to see an active icy world in orbit around Neptune, and even now Voyager’s 35-year-old image is still the best we have of that strange little moon.)

When the Voyagers left the realm of the known planets, each followed a different path into darkness: Voyager 1 arced up and out of the plane of the solar system, and Voyager 2 looped downward. Spilker also followed her own path: she went to graduate school and earned her doctorate in planetary science using Voyager data—not knowing that several decades later, after leading NASA’s Cassini mission to Saturn, she’d again be part of the mission that started it all.

“The chance came to go back to Voyager,” she says. “And I said, ‘Of course. I’d love to go back.’”

In the interim, as the Voyagers sailed farther from their Earthly harbor, teams shut down many of the onboard instruments, including the cameras. But the pair kept studying the space that they alone were visiting. Their main job was now to characterize the heliosphere—the solar-system-encompassing, cosmic-ray-blocking bubble formed by our sun’s wind and magnetic field. They would document the alien mix of particles and fields that pervade near nothingness. And maybe, if they got lucky, the twins would each escape the protective solar caul entirely to be reborn as true interstellar wanderers.

In 2012 Voyager 1 transcended this boundary , known as the heliopause, where the sun’s influence wanes. Before that scientists could only guess at what lay beyond this barrier and could only model how it shielded Earth from the harshness of the void. Now Voyager 1 could tell us directly about the stuff between the stars. Voyager 2 followed in 2018 , and Fox—then the new chief of NASA’s heliophysics division—was in the midst of the action.

“You’re looking at the cosmic rays going up and the solar wind going down, and it was one of those ‘oh, my god, this is so exciting’ moments,” Fox recalls. “I think of the Voyagers as one mission,” she says. “We’re putting all the data together, but they’re the ones that are out there. They’re the brave spacecraft that have left the protective bubble of the heliosphere and are out exploring interstellar space. It’s hard not to be excited by them.”

This wasn’t the first time Voyager 1 had started speaking an unintelligible language. In 2022, when the probe suffered an earlier bout of garbled telemetry, JPL engineer Bob Rasmussen was shaken out of retirement. The lab wanted to know if Rasmussen, who’d joined the spacecraft’s systems engineering team in 1975, was willing to have a think about the situation.

“I’d been happily retired for a bit more than a year at that point, with plenty else to keep me busy,” Rasmussen says. “But I like solving puzzles, and this was a tough one that I just couldn’t pass up. Cracking it took a few months, but the puzzle stream hasn’t slowed since then.”

Afterward, he stayed on-call. So last November, when Voyager 1 again started transmitting nonsense, Rasmussen was ready for more problem-solving. He was joined by a hand-picked team of specialists, and together they dove into the details for getting the ailing spacecraft back in action.

The problems were at least three layers deep. First, it takes a long time to communicate with Voyager 1. Traveling at the speed of light, the radio signals used to command the spacecraft take 22.5 hours to travel 15 billion miles—and 22.5 hours to come back. Second, the Voyagers are not exactly modern technology.

“Most things don’t last 46 years. Your clock radio and toaster aren’t going to last 46 years,” says Dodd, who started on the Voyager project straight out of school, then worked on other missions and is now back on this one.

Plus, many of the people who built and developed the spacecraft in the 1970s aren’t around to explain the rationale behind the designs.

And third, unluckily enough, whatever had mangled the spacecraft had managed to take out Voyager 1’s ability to send meaningful communications. The team was in the dark, trying to find the invisible source of an error. (Imagine trying to revive a stalled desktop computer with a frozen screen: you can’t see your cursor, and your clicks risk causing more problems—except in this case each input carries a multiday lag and could damage a precious, misbehaving artifact that is more than 15 billion miles away.) Perhaps the most vexing part was the team’s knowledge that Voyager 1 was otherwise intact and functioning as it should be.

“It’s still doing what it’s supposed to be doing,” Westlake says. “It just can’t quite figure out how to send the correct message home.”

Rasmussen and his colleagues set out to understand the spacecraft in as much detail as possible. That meant poring over the original design schematics, now yellowed and pinned to various walls—an effort that resembled “a bit of an archaeology dig,” Dodd says—and studying how past teams had addressed anomalies. That was tricky, Dodd says, because even though the team members could figure out how engineers solved a problem, they couldn’t necessarily discern the rationale behind various solutions. They’d send commands to Voyager 1 about once a week—usually on Fridays—and by Sunday, they’d hear back from the spacecraft.

“There’s suspense after each cautious move, hope with each piece that falls into place, disappointment if our hunches are wrong,” Rasmussen says.

Progress was slow. And as time crept on, the team grew more concerned. But no one was giving up, at any level of leadership.

“I will rely on the Voyager team to say, ‘Hey, Nicky, we’ve done everything , ’” Fox says. “We wouldn’t make any decisions until we knew that every single thing had been tried and tried again because we really do want to get Voyager 1 back talking to us.”

And then, in early March, something changed. In response to a command, instead of beaming back absolute gibberish, the spacecraft sent a string of numbers that looked more familiar. It proved to be a Rosetta stone moment. Soon an unnamed engineer at NASA’s Deep Space Network—the globe-girdling array of radio dishes that relays information from Earth to spacecraft—had learned how to speak Voyager 1’s jumbled language.

After translating that vaguely familiar portion of the spacecraft’s transmission, the team could see that it contained a readout of the flight data system’s memory. Now they face new questions: Can they find and correct the source of the mutated code? Can they learn whether the spacecraft is sending useful science data? Can they restore Voyager 1’s lexicon to its original state—or will they need to continue speaking in the probe’s new postheliopause patois? “The hope is that we’ll get good science data back,” Westlake says. “Thinking about something that’s been a constant throughout my entire career going away is really tough to think about.”

But either by glitch or time’s slow decay of radioactive power sources, the Voyagers will, of course, eventually fade away. Each year they lose four watts of power, and they grow ever colder. “Whether it’s this particular anomaly that gets us or one downstream, or the spacecraft gets old enough and cold enough —one day you’ll go to look for it and it has just stopped working,” Spilker says.

Like silent ambassadors or wordless emissaries, the Voyagers will keep sailing outward, still carrying us with them into the stars—“sort of like a message a bottle,” Spilker says.

Besides their science payloads, a fraction of each spacecraft’s mass was devoted to casting a cosmic message into the interstellar ocean from a lonely island called Earth. Mounted to each probe is a golden record etched with grooves encoding a selection of sights and sounds from our small corner of space and time. An accompanying stylus is positioned to play the record from the beginning, alongside a pictographic and arithmetic instruction manual.

The records are gold because gold is stable for eons, and they’re records because that was the best way to store a lot of information in the 1970s. Should they ever be recovered and decoded, the message will tell the stories of we humans—at least as envisioned (and in some cases performed) by a small group of folks that included my parents ( the late astrophysicist Frank Drake and his surviving spouse Amahl Shakhashiri Drake), astronomer Carl Sagan, documentary producer Ann Druyan and science writer Timothy Ferris. Those stories are imperfect. They’re filled with lopsided optimism and scrubbed of references to war, famine, poverty and most any other Earthly failing—a deliberate decision to hide the defects of our broken world. I know this because my dad, the record’s technical director and a pioneer in the scientific quest to find cosmic civilizations, told me about the hard choices he’d made in selecting the photographs. And I know it because my mom, who recorded the message’s Arabic greeting (“Greetings to our friends in the stars. We wish that we will meet you someday”), helped, too.

For me, as the Voyagers travel through space , they’re not only helping us understand the cosmic context in which we exist; they’re also bearing a memento of my parents into the stars. These spacecraft—and their gleaming paean to Earth—will survive for billions of years. Long after our world, our sun and everything we hold dear becomes unrecognizable, the Voyagers will remain, resolutely speeding ever farther from a home that no longer exists and containing artifacts of a civilization that once was.

That’s why, over nearly half a century, the Voyagers and their interstellar tidings have come to be bigger than the already audacious mission they were designed to accomplish. Their reach is broader. And their inevitable silence will be profound.

“The thought that they’re out there on their own and you can no longer communicate with them—it’s traumatic,” Fox says. “It’s sad. It’s really sad.”

The Sun Spot

NASA Engineers Make Progress Toward Understanding Voyager 1 Issue

An illustration of a spacecraft against a blue space-like background

Since November 2023, NASA’s Voyager 1 spacecraft has been sending a steady radio signal to Earth, but the signal does not contain usable data. The source of the issue appears to be with one of three onboard computers, the flight data subsystem (FDS), which is responsible for packaging the science and engineering data before it’s sent to Earth by the telemetry modulation unit.

On March 3, the Voyager mission team saw activity from one section of the FDS that differed from the rest of the computer’s unreadable data stream. The new signal was still not in the format used by Voyager 1 when the FDS is working properly, so the team wasn’t initially sure what to make of it. But an engineer with the agency’s Deep Space Network, which operates the radio antennas that communicate with both Voyagers and other spacecraft traveling to the Moon and beyond, was able to decode the new signal and found that it contains a readout of the entire FDS memory.

The FDS memory includes its code, or instructions for what to do, as well as variables, or values used in the code that can change based on commands or the spacecraft’s status. It also contains science or engineering data for downlink. The team will compare this readout to the one that came down before the issue arose and look for discrepancies in the code and the variables to potentially find the source of the ongoing issue.

This new signal resulted from a command sent to Voyager 1 on March 1. Called a “poke” by the team, the command is meant to gently prompt the FDS to try different sequences in its software package in case the issue could be resolved by going around a corrupted section.

Because Voyager 1 is more than 15 billion miles (24 billion kilometers) from Earth, it takes 22.5 hours for a radio signal to reach the spacecraft and another 22.5 hours for the probe’s response to reach antennas on the ground. So the team received the results of the command on March 3. On March 7, engineers began working to decode the data, and on March 10, they determined that it contains a memory readout.

The team is analyzing the readout. Using that information to devise a potential solution and attempt to put it into action will take time.

News Media Contact Calla  Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e. cofield @jpl.nasa.gov

Image that reads Space Place and links to spaceplace.nasa.gov.

Voyager 1 and 2: The Interstellar Mission

An image of Neptune taken by the Voyager 2 spacecraft.

An image of Neptune taken by the Voyager 2 spacecraft. Image credit: NASA

NASA has beautiful photos of every planet in our solar system. We even have images of faraway Neptune , as you can see in the photo above.

Neptune is much too distant for an astronaut to travel there with a camera. So, how do we have pictures from distant locations in our solar system? Our photographers were two spacecraft, called Voyager 1 and Voyager 2!

An artist’s rendering of one of the Voyager spacecraft.

An artist’s rendering of one of the Voyager spacecraft. Image credit: NASA

The Voyager 1 and 2 spacecraft launched from Earth in 1977. Their mission was to explore Jupiter and Saturn —and beyond to the outer planets of our solar system. This was a big task. No human-made object had ever attempted a journey like that before.

The two spacecraft took tens of thousands of pictures of Jupiter and Saturn and their moons. The pictures from Voyager 1 and 2 allowed us to see lots of things for the first time. For example, they captured detailed photos of Jupiter's clouds and storms, and the structure of Saturn's rings .

Image of storms on Jupiter taken by the Voyager 1 spacecraft.

Image of storms on Jupiter taken by the Voyager 1 spacecraft. Image credit: NASA

Voyager 1 and 2 also discovered active volcanoes on Jupiter's moon Io , and much more. Voyager 2 also took pictures of Uranus and Neptune. Together, the Voyager missions discovered 22 moons.

Since then, these spacecraft have continued to travel farther away from us. Voyager 1 and 2 are now so far away that they are in interstellar space —the region between the stars. No other spacecraft have ever flown this far away.

Where will Voyager go next?

Watch this video to find out what's beyond our solar system!

Both spacecraft are still sending information back to Earth. This data will help us learn about conditions in the distant solar system and interstellar space.

The Voyagers have enough fuel and power to operate until 2025 and beyond. Sometime after this they will not be able to communicate with Earth anymore. Unless something stops them, they will continue to travel on and on, passing other stars after many thousands of years.

Each Voyager spacecraft also carries a message. Both spacecraft carry a golden record with scenes and sounds from Earth. The records also contain music and greetings in different languages. So, if intelligent life ever find these spacecraft, they may learn something about Earth and us as well!

A photo of the golden record that was sent into space on both Voyager 1 and Voyager 2.

A photo of the golden record that was sent into space on both Voyager 1 and Voyager 2. Image credit: NASA/JPL-Caltech

More about our universe!

A sign that says welcome to interstellar space

Where does interstellar space begin?

an illustration arrows pointing at stars on a dark sky

Searching for other planets like ours

an illustrated game box cover for the Galactic Explorer game

Play Galactic Explorer!

If you liked this, you may like:

Illustration of a game controller that links to the Space Place Games menu.

' class=

Voyager 1 & 2

  • Launched on September 5, 1977
  • Surveyed the Jupiter and Saturn systems
  • First spacecraft to reach interstellar space
  • RTGs still operating
  • Currently exploring beyond our solar system
  • Launched on August 20, 1977
  • Only spacecraft to visit Jupiter, Saturn, Uranus and Neptune
  • Currently exploring the edge of the solar system

Each powered by:

  • 3 Multi-Hundred Watt (MHW) RTGs stacked in a series on a boom, producing about 158 W e each, at launch.

Voyager 2 is the only spacecraft to have visited all four giant planets, and the only one to have flown past distant Uranus and Neptune.

As the electrical power decreases, power loads on the spacecraft must be turned off in order to avoid having demand exceed supply. As loads are turned off, some spacecraft capabilities are eliminated.

Voyager Goals & Accomplishments

Voyager 1 and 2 were designed to take advantage of a rare planetary alignment to explore the outer solar system. Voyager 1 targeted Jupiter and Saturn before continuing on to chart the far edges of our solar system. Voyager 2 targeted Jupiter, Saturn, Uranus and Neptune before joining its sister probe on their interstellar mission.

Voyager proved to be one of the greatest missions of discovery in history. Among their many revelations about the solar system are:

  • Rings around Jupiter
  • Volcanoes on Jupiter's moon Io
  • Moons of Saturn that shepherd its rings
  • New moons around Uranus and Neptune
  • Geysers of liquid nitrogen on Neptune's moon Triton
  • Revealed and crossed the farthest boundary of our solar system

Voyager 2 is the only spacecraft to study all four of the solar system's giant planets at close range. The Voyagers are now exploring the outermost reaches of our sun's influence, where the solar wind mixes with the interstellar wind of our galaxy. Their long-lived power source has enabled these explorers to continue teaching us about our solar system for more than years after they left earth.

  • Go to Voyager Homepage
  • Go to Voyager Image Gallery
  • Status: Where are the Voyagers?

Mission Elapsed Time

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

The Golden Record

Pioneers 10 and 11, which preceded Voyager, both carried small metal plaques identifying their time and place of origin for the benefit of any other spacefarers that might find them in the distant future. With this example before them, NASA placed a more ambitious message aboard Voyager 1 and 2, a kind of time capsule, intended to communicate a story of our world to extraterrestrials. The Voyager message is carried by a phonograph record, a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and culture on Earth.

Golden Record

  • Share full article

Advertisement

Supported by

Voyager 1, First Craft in Interstellar Space, May Have Gone Dark

The 46-year-old probe, which flew by Jupiter and Saturn in its youth and inspired earthlings with images of the planet as a “Pale Blue Dot,” hasn’t sent usable data from interstellar space in months.

voyager 1 and 2 nasa

By Orlando Mayorquin

When Voyager 1 launched in 1977, scientists hoped it could do what it was built to do and take up-close images of Jupiter and Saturn. It did that — and much more.

Voyager 1 discovered active volcanoes, moons and planetary rings, proving along the way that Earth and all of humanity could be squished into a single pixel in a photograph, a “ pale blue dot, ” as the astronomer Carl Sagan called it. It stretched a four-year mission into the present day, embarking on the deepest journey ever into space.

Now, it may have bid its final farewell to that faraway dot.

Voyager 1 , the farthest man-made object in space, hasn’t sent coherent data to Earth since November. NASA has been trying to diagnose what the Voyager mission’s project manager, Suzanne Dodd, called the “most serious issue” the robotic probe has faced since she took the job in 2010.

The spacecraft encountered a glitch in one of its computers that has eliminated its ability to send engineering and science data back to Earth.

The loss of Voyager 1 would cap decades of scientific breakthroughs and signal the beginning of the end for a mission that has given shape to humanity’s most distant ambition and inspired generations to look to the skies.

“Scientifically, it’s a big loss,” Ms. Dodd said. “I think — emotionally — it’s maybe even a bigger loss.”

Voyager 1 is one half of the Voyager mission. It has a twin spacecraft, Voyager 2.

Launched in 1977, they were primarily built for a four-year trip to Jupiter and Saturn , expanding on earlier flybys by the Pioneer 10 and 11 probes.

The Voyager mission capitalized on a rare alignment of the outer planets — once every 175 years — allowing the probes to visit all four.

Using the gravity of each planet, the Voyager spacecraft could swing onto the next, according to NASA .

The mission to Jupiter and Saturn was a success.

The 1980s flybys yielded several new discoveries, including new insights about the so-called great red spot on Jupiter, the rings around Saturn and the many moons of each planet.

Voyager 2 also explored Uranus and Neptune , becoming in 1989 the only spacecraft to explore all four outer planets.

voyager 1 and 2 nasa

Voyager 1, meanwhile, had set a course for deep space, using its camera to photograph the planets it was leaving behind along the way. Voyager 2 would later begin its own trek into deep space.

“Anybody who is interested in space is interested in the things Voyager discovered about the outer planets and their moons,” said Kate Howells, the public education specialist at the Planetary Society, an organization co-founded by Dr. Sagan to promote space exploration.

“But I think the pale blue dot was one of those things that was sort of more poetic and touching,” she added.

On Valentine’s Day 1990, Voyager 1, darting 3.7 billion miles away from the sun toward the outer reaches of the solar system, turned around and snapped a photo of Earth that Dr. Sagan and others understood to be a humbling self-portrait of humanity.

“It’s known the world over, and it does connect humanity to the stars,” Ms. Dodd said of the mission.

She added: “I’ve had many, many many people come up to me and say: ‘Wow, I love Voyager. It’s what got me excited about space. It’s what got me thinking about our place here on Earth and what that means.’”

Ms. Howells, 35, counts herself among those people.

About 10 years ago, to celebrate the beginning of her space career, Ms. Howells spent her first paycheck from the Planetary Society to get a Voyager tattoo.

Though spacecraft “all kind of look the same,” she said, more people recognize the tattoo than she anticipated.

“I think that speaks to how famous Voyager is,” she said.

The Voyagers made their mark on popular culture , inspiring a highly intelligent “Voyager 6” in “Star Trek: The Motion Picture” and references on “The X Files” and “The West Wing.”

Even as more advanced probes were launched from Earth, Voyager 1 continued to reliably enrich our understanding of space.

In 2012, it became the first man-made object to exit the heliosphere, the space around the solar system directly influenced by the sun. There is a technical debate among scientists around whether Voyager 1 has actually left the solar system, but, nonetheless, it became interstellar — traversing the space between stars.

That charted a new path for heliophysics, which looks at how the sun influences the space around it. In 2018, Voyager 2 followed its twin between the stars.

Before Voyager 1, scientific data on the sun’s gases and material came only from within the heliosphere’s confines, according to Dr. Jamie Rankin, Voyager’s deputy project scientist.

“And so now we can for the first time kind of connect the inside-out view from the outside-in,” Dr. Rankin said, “That’s a big part of it,” she added. “But the other half is simply that a lot of this material can’t be measured any other way than sending a spacecraft out there.”

Voyager 1 and 2 are the only such spacecraft. Before it went offline, Voyager 1 had been studying an anomalous disturbance in the magnetic field and plasma particles in interstellar space.

“Nothing else is getting launched to go out there,” Ms. Dodd said. “So that’s why we’re spending the time and being careful about trying to recover this spacecraft — because the science is so valuable.”

But recovery means getting under the hood of an aging spacecraft more than 15 billion miles away, equipped with the technology of yesteryear. It takes 45 hours to exchange information with the craft.

It has been repeated over the years that a smartphone has hundreds of thousands of times Voyager 1’s memory — and that the radio transmitter emits as many watts as a refrigerator lightbulb.

“There was one analogy given that is it’s like trying to figure out where your cursor is on your laptop screen when your laptop screen doesn’t work,” Ms. Dodd said.

Her team is still holding out hope, she said, especially as the tantalizing 50th launch anniversary in 2027 approaches. Voyager 1 has survived glitches before, though none as serious.

Voyager 2 is still operational, but aging. It has faced its own technical difficulties too.

NASA had already estimated that the nuclear-powered generators of both spacecrafts would likely die around 2025.

Even if the Voyager interstellar mission is near its end, the voyage still has far to go.

Voyager 1 and its twin, each 40,000 years away from the next closest star, will arguably remain on an indefinite mission.

“If Voyager should sometime in its distant future encounter beings from some other civilization in space, it bears a message,” Dr. Sagan said in a 1980 interview .

Each spacecraft carries a gold-plated phonograph record loaded with an array of sound recordings and images representing humanity’s richness, its diverse cultures and life on Earth.

“A gift across the cosmic ocean from one island of civilization to another,” Dr. Sagan said.

Orlando Mayorquin is a general assignment and breaking news reporter based in New York. More about Orlando Mayorquin

What’s Up in Space and Astronomy

Keep track of things going on in our solar system and all around the universe..

Never miss an eclipse, a meteor shower, a rocket launch or any other 2024 event  that’s out of this world with  our space and astronomy calendar .

A nova named T Coronae Borealis lit up the night about 80 years ago. Astronomers say it’s expected to put on another show  in the coming months.

Voyager 1, the 46-year-old first craft in interstellar space which flew by Jupiter and Saturn in its youth, may have gone dark .

Two spacecraft have ended up askew on the moon this year, illustrating that it’s not so easy to land upright on the lunar surface. Here is why .

What do you call a galaxy without stars? In addition to dark matter and dark energy, we now have dark galaxies  — collections of stars so sparse and faint that they are all but invisible.

Is Pluto a planet? And what is a planet, anyway? Test your knowledge here .

  • Skip to main content
  • Keyboard shortcuts for audio player

NASA's Voyager 1 spacecraft is talking nonsense. Its friends on Earth are worried

Nell Greenfieldboyce 2010

Nell Greenfieldboyce

voyager 1 and 2 nasa

This artist's impression shows one of the Voyager spacecraft moving through the darkness of space. NASA/JPL-Caltech hide caption

This artist's impression shows one of the Voyager spacecraft moving through the darkness of space.

The last time Stamatios "Tom" Krimigis saw the Voyager 1 space probe in person, it was the summer of 1977, just before it launched from Cape Canaveral, Florida.

Now Voyager 1 is over 15 billion miles away, beyond what many consider to be the edge of the solar system. Yet the on-board instrument Krimigis is in charge of is still going strong.

"I am the most surprised person in the world," says Krimigis — after all, the spacecraft's original mission to Jupiter and Saturn was only supposed to last about four years.

These days, though, he's also feeling another emotion when he thinks of Voyager 1.

"Frankly, I'm very worried," he says.

Ever since mid-November, the Voyager 1 spacecraft has been sending messages back to Earth that don't make any sense. It's as if the aging spacecraft has suffered some kind of stroke that's interfering with its ability to speak.

"It basically stopped talking to us in a coherent manner," says Suzanne Dodd of NASA's Jet Propulsion Laboratory, who has been the project manager for the Voyager interstellar mission since 2010. "It's a serious problem."

Instead of sending messages home in binary code, Voyager 1 is now just sending back alternating 1s and 0s. Dodd's team has tried the usual tricks to reset things — with no luck.

It looks like there's a problem with the onboard computer that takes data and packages it up to send back home. All of this computer technology is primitive compared to, say, the key fob that unlocks your car, says Dodd.

"The button you press to open the door of your car, that has more compute power than the Voyager spacecrafts do," she says. "It's remarkable that they keep flying, and that they've flown for 46-plus years."

voyager 1 and 2 nasa

Each of the Voyager probes carries an American flag and a copy of a golden record that can play greetings in many languages. NASA/JPL-Caltech hide caption

Each of the Voyager probes carries an American flag and a copy of a golden record that can play greetings in many languages.

Voyager 1 and its twin, Voyager 2, have outlasted many of those who designed and built them. So to try to fix Voyager 1's current woes, the dozen or so people on Dodd's team have had to pore over yellowed documents and old mimeographs.

"They're doing a lot of work to try and get into the heads of the original developers and figure out why they designed something the way they did and what we could possibly try that might give us some answers to what's going wrong with the spacecraft," says Dodd.

She says that they do have a list of possible fixes. As time goes on, they'll likely start sending commands to Voyager 1 that are more bold and risky.

"The things that we will do going forward are probably more challenging in the sense that you can't tell exactly if it's going to execute correctly — or if you're going to maybe do something you didn't want to do, inadvertently," says Dodd.

Linda Spilker , who serves as the Voyager mission's project scientist at NASA's Jet Propulsion Laboratory, says that when she comes to work she sees "all of these circuit diagrams up on the wall with sticky notes attached. And these people are just having a great time trying to troubleshoot, you know, the 60's and 70's technology."

"I'm cautiously optimistic," she says. "There's a lot of creativity there."

Still, this is a painstaking process that could take weeks, or even months. Voyager 1 is so distant, it takes almost a whole day for a signal to travel out there, and then a whole day for its response to return.

"We'll keep trying," says Dodd, "and it won't be quick."

In the meantime, Voyager's 1 discombobulation is a bummer for researchers like Stella Ocker , an astronomer with Caltech and the Carnegie Observatories

"We haven't been getting science data since this anomaly started," says Ocker, "and what that means is that we don't know what the environment that the spacecraft is traveling through looks like."

After 35 Years, Voyager Nears Edge Of Solar System

After 35 Years, Voyager Nears Edge Of Solar System

That interstellar environment isn't just empty darkness, she says. It contains stuff like gas, dust, and cosmic rays. Only the twin Voyager probes are far out enough to sample this cosmic stew.

"The science that I'm really interested in doing is actually only possible with Voyager 1," says Ocker, because Voyager 2 — despite being generally healthy for its advanced age — can't take the particular measurements she needs for her research.

Even if NASA's experts and consultants somehow come up with a miraculous plan that can get Voyager 1 back to normal, its time is running out.

The two Voyager probes are powered by plutonium, but that power system will eventually run out of juice. Mission managers have turned off heaters and taken other measures to conserve power and extend the Voyager probes' lifespan.

"My motto for a long time was 50 years or bust," says Krimigis with a laugh, "but we're sort of approaching that."

In a couple of years, the ebbing power supply will force managers to start turning off science instruments, one by one. The very last instrument might keep going until around 2030 or so.

When the power runs out and the probes are lifeless, Krimigis says both of these legendary space probes will basically become "space junk."

"It pains me to say that," he says. While Krimigis has participated in space missions to every planet, he says the Voyager program has a special place in his heart.

Spilker points out that each spacecraft will keep moving outward, carrying its copy of a golden record that has recorded greetings in many languages, along with the sounds of Earth.

"The science mission will end. But a part of Voyager and a part of us will continue on in the space between the stars," says Spilker, noting that the golden records "may even outlast humanity as we know it."

Krimigis, though, doubts that any alien will ever stumble across a Voyager probe and have a listen.

"Space is empty," he says, "and the probability of Voyager ever running into a planet is probably slim to none."

It will take about 40,000 years for Voyager 1 to approach another star; it will come within 1.7 light years of what NASA calls "an obscure star in the constellation Ursa Minor" — also known as the Little Dipper.

If NASA greenlights this interstellar mission, it could last 100 years

If NASA greenlights this interstellar mission, it could last 100 years

Knowing that the Voyager probes are running out of time, scientists have been drawing up plans for a new mission that, if funded and launched by NASA, would send another probe even farther out into the space between stars.

"If it happens, it would launch in the 2030s," says Ocker, "and it would reach twice as far as Voyager 1 in just 50 years."

  • space science
  • space exploration

NASA finds clue while solving Voyager 1's communication breakdown case

An outlier signal has brought ground control closer to decoding the troubling problem.

An illustration shows Voyager 1 in interstellar space

NASA engineers are a step closer to solving the communication problem that left the Voyager 1 spacecraft, which presently sits outside the solar system, unable to send usable data back to Earth.

In 2012, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space . For 11 years following this achievement, the spacecraft dutifully sent data to ground control. This was data that detailed how space works beyond the influence of the sun. In Nov. 2023, however, Voyager 1's communications with ground operators stopped making sense. 

To be clear, however, Voyager 2 , which followed its spacecraft sibling out of the solar system in 2018, is still operational and communicating with Earth.

"Effectively, the call between the spacecraft and the Earth was still connected, but Voyager's 'voice' was replaced with a monotonous dial tone," Voyager 1's engineering team previously told Space.com .

The source of the issue appears to be one of Voyager 1's three onboard computers: The flight data subsystem (FDS). This computer, NASA says , is responsible for packaging science and engineering data before it's sent to Earth by the spacecraft's telemetry modulation unit.

Related: NASA's Voyager 1 glitch has scientists sad yet hopeful: 'Voyager 2 is still going strong'

The positive step towards solving communications issues between ground control and Voyager 1 came on March 3 when the Voyager mission team detected activity from one section of the FDS that was different from the rest of the computer’s garbled data stream.

Voyager 1's messaging to Earth comes in the form of 1s and 0s, a computer language called binary code — but since the end of last year, this code has carried no meaning. Even the newly detected signal is still not in the correct format Voyager 1 should be using when FDS is functioning as designed, meaning the operating team was initially not quite sure what to make of it.

This changed, however, when an engineer at NASA's Deep Space Network , which is tasked with operating radio antennas that communicate with Voyager 1 and its interstellar sibling Voyager 2, as well as other NASA spacecraft closer to home, got a look at the code. The unnamed engineer was able to decode the outlier signal, discovering that it contained a readout of the FDS' entire memory.

Encoded with the FDS memory are performance instructions and code values that can change either if the spacecraft's status changes or if commanded to do so. Science and engineering data to be sent back to Earth are also locked up in the memory. 

The team will now compare this new signal, which occurred because of a prompt, or "poke," from mission control, to data that was sent back to Earth just before Voyager 1 started spouting binary nonsense. Finding discrepancies between regular Voyager 1 data and this poke-prompted signal will help the crew hunt for the source of the issue. The idea of the poke was to prompt FDS to try using different sequences in its software package and determine if the communication issue could be resolved by navigating around a corrupted or damaged section.

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

Voyager 1 is currently around 15 billion miles (24 billion kilometers) from Earth, meaning that solving communication issues can be a painstaking process. It takes 22.5 hours to receive a radio signal from Voyager 1, then another 22.5 hours to receive a response via the Deep Space Network's antennas.

That means the results of NASA's poke were received on March 3, and on March 7 engineers started working to decode this signal. Three days later they determined the signal contains an FDS memory readout.

NASA scientists and engineers will continue to analyze this readout to restore communication with the pioneering space mission that extended humanity's reach beyond the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Robert Lea

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

FAA grants license for SpaceX's March 14 Starship launch

SpaceX resets attempt at record-tying Falcon 9 launch after Wednesday night scrub

SpaceX launches giant Starship rocket into space on epic 3rd test flight (video)

Most Popular

By Robert Lea March 13, 2024

By Leonard David March 13, 2024

By Joe Rao March 13, 2024

By Mike Wall March 13, 2024

By Fran Ruiz March 13, 2024

By Daisy Dobrijevic March 13, 2024

By Elizabeth Howell March 13, 2024

By Andrew Jones March 13, 2024

By Keith Cooper March 13, 2024

  • 2 New Lego Technic Mars Crew Exploration Rover is sci-fi but built with NASA's help
  • 3 If there's life on Europa, solar sails could help us find it
  • 4 Can you solve NASA's Pi Day 2024 challenge?
  • 5 FAA grants license for SpaceX's March 14 Starship launch

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

SpaceX launched the third integrated flight test of its Super Heavy booster and Starship upper stage from the company’s Starbase orbital launch pad at 8:25 a.m. CT on March 14. This flight test is an important milestone toward providing NASA with a Starship HLS for its Artemis missions.

NASA Artemis Mission Progresses with SpaceX Starship Test Flight

A man sits in front of a computer screen in a large control room with huge screens in the background.

NASA Lights ‘Beacon’ on Moon With Autonomous Navigation System Test

NASA-Supported Team Discovers Aurora-Like Radio Bursts Above Sunspot

NASA-Supported Team Discovers Aurora-Like Radio Bursts Above Sunspot

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe

Black Holes

  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

NASA Delivers Science Instrument to JAXA’s Martian Moons Mission

NASA Delivers Science Instrument to JAXA’s Martian Moons Mission

Hubble Views a Galaxy Under Pressure

Hubble Views a Galaxy Under Pressure

voyager 1 and 2 nasa

NASA Helps Emerging Space Companies ‘Take the Heat’

voyager 1 and 2 nasa

10 Ways Students Can Prepare to #BeAnAstronaut

Astronaut Candidate Jessica Wittner

NASA Astronaut: Jessica Wittner

Coastal Resilience Projects

Coastal Resilience Projects

SWOT satellite data for water surface height in part of Mendocino County, Northern California

SWOT Satellite Catches Coastal Flooding During California Storms

Etna Eruption

Can Volcanic Super Eruptions Lead to Major Cooling? Study Suggests No

Eclipse Photographers Will Help Study Sun During Its Disappearing Act

Eclipse Photographers Will Help Study Sun During Its Disappearing Act

Hubble Tracks Jupiter’s Stormy Weather

Hubble Tracks Jupiter’s Stormy Weather

Black Holes

Cheers! NASA’s Webb Finds Ethanol, Other Icy Ingredients for Worlds

NASA Volunteers Find Fifteen Rare “Active Asteroids”

NASA Volunteers Find Fifteen Rare “Active Asteroids”

Amendment 5: A.7 Biodiversity and Ecological Conservation Final Text and Due Dates

Amendment 5: A.7 Biodiversity and Ecological Conservation Final Text and Due Dates

voyager 1 and 2 nasa

NASA Armstrong Updates 1960s Concept to Study Giant Planets

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

Dream with Us graphic, showing a female African American dreaming up aeronautics ideas.

2024 Dream with Us Design Challenge

The 2024 Power to Explore logo celebrates the total eclipse with an illustration of the Sun disappearing behind an atomic symbol.

NASA Announces Semifinalists of Power to Explore Challenge

voyager 1 and 2 nasa

Tech Today: Suspended Solar Panels See the Light

Three small rovers that will explore the Moon together

NASA’s Network of Small Moon-Bound Rovers Is Ready to Roll

Cartoon graphic of the annual NASA Pi Day Challenge

NASA Pi Day Challenge Serves Up a Mathematical Marvel

Women’s History Month 2022

Women’s History Month: Celebrating Women Astronauts 2024

Headshot of Sarah Mann over a faded black and white aerial image of NASA Armstrong. There is text that reads “Women’s History Month – Sarah Mann, Public Affairs Specialist.”

Women’s History Month: Meet Sarah Mann

8 Must-Have NASA Resources for Science Teachers in 2024

8 Must-Have NASA Resources for Science Teachers in 2024

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

NASA astronauts (from left) Jasmin Moghbeli and Loral O'Hara, both Expedition 70 Flight Engineers, partner together removing and replacing components inside the Cold Atom Lab aboard the International Space Station. The space physics device enables observations of atoms chilled to temperatures near absolute zero allowing scientists to study fundamental behaviors and quantum characteristics not possible on Earth.

Logros de la NASA en la estación espacial en 2023

Voyager 1 & 2.

The headshot image of NASA

The primary mission of Voyager 1 and 2 was the exploration of Jupiter and Saturn; after completing this objective, Voyager 1 and 2’s missions were extended. The Voyager Interstellar Mission will explore the limits of the Sun’s influence at the edge of the solar system and beyond. Penetration of the heliopause boundary between the solar wind and the interstellar medium will allow measurements to be made of the interstellar fields, particles, and waves unaffected by the solar wind.

Launch : August/September 1977 Operating Network : Deep Space Network

› Deep Space Network (DSN) › Voyager 1 & 2 › Universe Missions Supported by SCaN

NASA gave Voyager 1 a 'poke' amid communication woes. Here's why the response was encouraging.

The voyager 1's mission was extended to 2025. but a communication breakdown in november put it in peril..

voyager 1 and 2 nasa

The mission of one of NASA's twin Voyager space probes has been in peril for months as the space agency has been unable to receive usable data from the craft launched 46 years ago to explore the far reaches of the cosmos.

But a recent "poke" sent to Voyager 1 as it travels 15.1 billion miles away from Earth has given engineers a reason for optimism when they received a response earlier in March.

Mission control prodded Voyager 1 and received a new signal March 3 that they began working furiously to decode days later. By March 10, the team determined that what they had was a memory readout, which may contain valuable data to allow them to restore regular communications with Voyager 1, NASA said .

The 46-year-old pioneering probe has continually defied expectations for its lifespan as it ventures further into uncharted territory of the cosmos . NASA had hoped Voyager 1's extended mission would allow the spacecraft to beam back valuable data through 2025 .

But a communication breakdown in November put that goal in peril.

SpaceX launch: Starship lost, but successful in third test; here's what happened in past launches

Unexpected issue caused Voyager 1 to send home gibberish

Voyager 1 has never ceased sending a steady radio signal to ground control operators on Earth, but that signal has not carried any usable data since November, NASA said.

Instead, the probe's telemetry modulation unit began sending a nonsensical repeating patterns of code.

The space agency traced the source of the communication breakdown to one of the spacecraft’s three onboard computers, known as the flight data subsystem, which is responsible for packaging the science and engineering data before it’s beamed to Earth.

In order to figure out what was going on, mission control sent a "poke" March 1 commanding Voyager 1's flight data subsystem to run different sequences in case a software corruption was causing the issue. Within two days, NASA got the response for which it hoped.

On March 3, the Voyager mission team noticed that activity from one section of the flight data subsystem, was different from the rest of the computer's unreadable data stream. Because it still wasn't in the format used by Voyager 1 when it's properly sending data, the team was confused.

The array of giant radio network antennas known as the  Deep Space Network that communicates with both Voyager probes decoded the signal and found that it contained a readout of the subsystem's entire memory – its coding, as well as the science and engineering data its collected. The discovered readout provided an opportunity for the team to analyze it for discrepancies in the code that could have caused the ongoing issue.

"Using that information to devise a potential solution and attempt to put it into action will take time," NASA said.

What is the mission of NASA Voyager probes?

The  twin Voyager probes  were launched on separate dates in 1977 from Cape Canaveral, Florida and have since traveled billions of miles away from Earth.

In 2012, Voyager 1 became the first spacecraft to reach interstellar space, followed in 2018 by Voyager 2,  according to NA S A .

The probes' main mission is to explore the far reaches of our solar system ‒ and beyond. To that end, the spacecrafts have investigated all the giant planets of our outer solar system ‒ Jupiter, Saturn, Uranus and Neptune ‒ as well as the planets' magnetic fields and a combined 48 of their moons,  NASA says .

But both Voyager 1 and 2 also carry a  greeting  to any form of life they may encounter called the Golden Record.

Famed American astronomer Carl Sagan chaired the committee tasked with selecting the contents of the message, contained on a 12-inch gold-plated copper disk. The phonograph records contain aspects that encapsulate life on Earth, such as  samples of music  from different cultures and eras, natural and man-made  sounds from Earth , and electronic information encoded in analog form that an advanced civilization could convert into  photographs .

Voyager 2 also recently lost contact with NASA

In July, Voyager 2 also experienced a communication breakdown with mission control when its antenna was inadvertently pointed into the wrong direction .

Contact was lost July 21 with Voyager 2 after mission control transmitted routine commands that inadvertently triggered a 2-degree change in the craft's antenna orientation and disrupted the deep-space probe's ability to receive commands or transmit data back to Earth.

Fortunately, contact was restored in August when NASA's Jet Propulsion Laboratory sent an interstellar "shout" that successfully commanded the craft, which is now 12.6 billion miles away, to reorient itself.

Eric Lagatta covers breaking and trending news for USA TODAY. Reach him at [email protected]

NASA's Voyager 1 sends readable message to Earth after 4 nail-biting months of gibberish

After four months of being unable to detect comprehensible data from the Voyager 1 spacecraft, NASA scientists have had fresh luck after sending a "poke."

Artists conception of Voyager 1 spacecraft entering interstellar space

After a nail-biting four months, NASA has finally received a comprehensible signal from its Voyager 1 spacecraft. 

Since November 2023, the almost-50-year-old spacecraft has been experiencing trouble with its onboard computers. Although Voyager 1, one of NASA's longest-lived space missions, has been sending a steady radio signal to Earth, it hasn't contained any usable data , which has perplexed scientists. 

Now, in response to a command prompt, or "poke," sent from Earth on March 1, NASA has received a new signal from Voyager 1 that engineers have been able to decode. Mission scientists hope this information may help them explain the spacecraft's recent communication problems. 

"The source of the issue appears to be with one of three onboard computers, the flight data subsystem (FDS), which is responsible for packaging the science and engineering data before it's sent to Earth by the telemetry modulation unit," NASA said in a blog post Wednesday (March 13) .

Related: NASA's 46-year-old Voyager 1 probe is no longer transmitting data

On March 1, as part of efforts to find a solution to Voyager 1's computer issues, NASA sent a command to the FDS on the spacecraft, instructing it to use different sequences in its software package, which would effectively mean skirting around any data that may be corrupted. 

Voyager 1 is more than 15 billion miles (24 billion kilometers) from Earth. This means any radio signals sent from our planet take 22.5 hours to reach the spacecraft, with any response taking the same time to be picked up by antennas on Earth. 

On March 3, NASA detected activity from one section of the FDS that differed from the "unreadable data stream" they'd previously been receiving. Four days later, engineers started the heavy task of trying to decode this signal. By March 10, the team discovered that the signal contained a readout of the entire FDS memory. This included the instructions for what the FDS needed to do, any values in its code that can be changed depending on commands from NASA or the spacecraft's status, and downloadable science or engineering data.  

Voyager 1 has ventured farther from Earth than any other human-made object . It was launched in 1977, within weeks of its twin spacecraft , Voyager 2. The initial aim of the mission was to explore Jupiter and Saturn . Yet after almost five decades, and with countless discoveries under their belts, the mission continues beyond the boundaries of the solar system . 

— NASA hears 'heartbeat' signal from Voyager 2 probe a week after losing contact

— Historic space photo of the week: Voyager 2 spies a storm on Saturn 42 years ago

— NASA reestablishes full contact with Voyager 2 probe after nail-biting 2-week blackout

NASA scientists will now "compare this readout to the one that came down before the issue arose and look for discrepancies in the code and the variables to potentially find the source of the ongoing issue," they said in the blog post.  

However, NASA stressed that it will take time to determine if any of the insights gained from this new signal can be used to solve Voyager 1's long-standing communication issues. 

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Emily Cooke

Emily is a health news writer based in London, United Kingdom. She holds a bachelor's degree in biology from Durham University and a master's degree in clinical and therapeutic neuroscience from Oxford University. She has worked in science communication, medical writing and as a local news reporter while undertaking journalism training. In 2018, she was named one of MHP Communications' 30 journalists to watch under 30. ( [email protected]

SpaceX's incredibly powerful Starship lost in the Indian Ocean after reaching orbit for 1st time

NASA unveils cryptic message from Earth to be sent to Jupiter's icy ocean moon Europa

Pi calculated to 105 trillion digits, smashing world record

  • Bruzote I have an inside source who says the message said, "Be sure to drink your Ovaltine." Reply
  • View All 1 Comment

Most Popular

By Keith Cooper March 15, 2024

By Robert A. Schwartz March 15, 2024

By Samantha Mathewson March 15, 2024

By Emily Cooke March 14, 2024

By Stephanie Pappas March 14, 2024

By Jennifer Zieba March 14, 2024

By Tom Metcalfe March 14, 2024

By Eos.org, Erin Martin-Jones March 14, 2024

By Ben Turner March 14, 2024

  • 2 India's evolutionary past tied to huge migration 50,000 years ago and to now-extinct human relatives
  • 3 Dying SpaceX rocket creates glowing, galaxy-like spiral in the middle of the Northern Lights
  • 4 12 surprising facts about pi to chew on this Pi Day
  • 5 1,900-year-old coins from Jewish revolt against the Romans discovered in the Judaen desert
  • 2 'Flow state' uncovered: We finally know what happens in the brain when you're 'in the zone'
  • 3 James Webb telescope confirms there is something seriously wrong with our understanding of the universe

IMAGES

  1. Major Accomplishments of NASA's Voyager 1 and 2 Spacecraft

    voyager 1 and 2 nasa

  2. Voyager Mission Timeline

    voyager 1 and 2 nasa

  3. Voyager 1 & 2

    voyager 1 and 2 nasa

  4. Voyager

    voyager 1 and 2 nasa

  5. 35-Year-Old Voyager 2 Probe Is NASA's Longest Mission Ever

    voyager 1 and 2 nasa

  6. 40 Years Out, NASA's Twin Voyager Probes Inspire Golden Record Revivals

    voyager 1 and 2 nasa

VIDEO

  1. NASA Warns Voyager 1 May Have Made Contact With An Unknown Force In Deep Space!

  2. Voyager 1 Stuns NASA with Mysterious Encounter in Interstellar Space

  3. আর কতদিন যোগাযোগ থাকবে ভয়েজার ভাইদের সাথে? Very soon we lost Voyager brothers @travel4life&mystery

  4. PIONEER / VOYAGER (AND THE STARS GO WITH YOU)

  5. Voyager The journey to the new world

  6. 6 MINUTES AGO: Voyager Detected Unknown Force That Proves Scientists Wrong!

COMMENTS

  1. Voyager 1

    Voyager 1's Interstellar Mission. All the planetary encounters finally over in 1989, the missions of Voyager 1 and 2 were declared part of the Voyager Interstellar Mission (VIM), which officially began on Jan. 1, 1990. The goal was to extend NASA's exploration of the solar system beyond the neighborhood of the outer planets to the outer ...

  2. Finally, engineers have a clue that could help them save Voyager 1

    Suzanne Dodd, NASA's project manager for Voyager 1 and its twin, Voyager 2, recently told Ars that engineers would need to pull off their "biggest miracle" to restore Voyager 1 to normal ...

  3. Voyager

    Mission Overview. The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between ...

  4. Voyager

    NASA's Voyager Team Focuses on Software Patch, Thrusters. The efforts should help extend the lifetimes of the agency's interstellar explorers. Read more. Voyager 2. Distance from Sun. 12,636,757,846 mi. 135.94375786 AU. Voyager 2. One-Way Light Time.

  5. Voyager 2

    NASA's Voyager 2 is the second spacecraft to enter interstellar space. On Dec. 10, 2018, the spacecraft joined its twin - Voyager 1 - as the only human-made objects to enter the space between the stars. Voyager 2 is the only spacecraft to study all four of the solar system's giant planets at close range. Voyager 2 discovered a 14th moon at ...

  6. Voyager

    Voyager 1 and its twin Voyager 2 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. Voyager 1 reached the interstellar boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018. Mission Type.

  7. Voyager 1

    About the mission. Voyager 1 reached interstellar space in August 2012 and is the most distant human-made object in existence. Launched just shortly after its twin spacecraft, Voyager 2, in 1977, Voyager 1 explored the Jovian and Saturnian systems discovering new moons, active volcanoes and a wealth of data about the outer solar system.

  8. Voyager

    The twin spacecraft Voyager 1 and Voyager 2 were launched by NASA in separate months in the summer of 1977 from Cape Canaveral, Florida. As originally designed, the Voyagers were to conduct closeup studies of Jupiter and Saturn, Saturn's rings, and the larger moons of the two planets. ... Eventually, between them, Voyager 1 and 2 would explore ...

  9. Voyager 1

    Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and the interstellar space beyond the Sun's heliosphere. It was launched 16 days after its twin Voyager 2.

  10. Voyager 2

    The Voyager 2 spacecraft, which has been in operation since 1977 and is the only spacecraft to have ever visited Uranus and Neptune, has made its way to interstellar space, where its twin spacecraft, Voyager 1, has resided since August 2012. During its travels through the outer solar system, Voyager 2 visited all four gas giant planets, and ...

  11. Voyager 1 and 2

    Voyager 1 and 2. This artist's concept of the Voyager spacecraft with its antennapointing to Earth. Voyager 1 Entering Interstellar Space (Artist Concept) NASA's Voyager 1 spacecraft launched atop its Titan/Centaur-6 launch vehicle from the Kennedy Space Center Launch Complex in Florida on... This artist's concept depicts NASA's Voyager 1 ...

  12. NASA Communicates with Ailing Voyager 1 Spacecraft

    First, it takes a long time to communicate with Voyager 1. Traveling at the speed of light, the radio signals used to command the spacecraft take 22.5 hours to travel 15 billion miles—and 22.5 ...

  13. Voyager

    Voyager 1 flew within 64,200 kilometers (40,000 miles) of the cloud tops, while Voyager 2 came within 41,000 kilometers (26,000 miles). Saturn is the second largest planet in the solar system. It takes 29.5 Earth years to complete one orbit of the Sun, and its day was clocked at 10 hours, 39 minutes.

  14. NASA Engineers Make Progress Toward Understanding Voyager 1 Issue

    This new signal resulted from a command sent to Voyager 1 on March 1. Called a "poke" by the team, the command is meant to gently prompt the FDS to try different sequences in its software package in case the issue could be resolved by going around a corrupted section. Because Voyager 1 is more than 15 billion miles (24 billion kilometers ...

  15. Voyager

    Both Voyager 1 and Voyager 2 have reached "Interstellar space" and each continue their unique journey through the Universe. In the NASA Eyes on the Solar System app, you can see the real spacecraft trajectories of the Voyagers, which are updated every five minutes. Distance and velocities are updated in real-time.

  16. Voyager

    The Voyager 1 and 2 Saturn encounters occurred nine months apart, in November 1980 and August 1981. Voyager 1 is leaving the solar system. Voyager 2 completed its encounter with Uranus in January 1986 and with Neptune in August 1989, and is now also en route out of the solar system.

  17. Voyager 1 and 2: The Interstellar Mission

    The pictures from Voyager 1 and 2 allowed us to see lots of things for the first time. For example, they captured detailed photos of Jupiter's clouds and storms, and the structure of Saturn's rings. Image of storms on Jupiter taken by the Voyager 1 spacecraft. Image credit: NASA

  18. Voyager 1 & 2

    Voyager Goals & Accomplishments. Voyager 1 and 2 were designed to take advantage of a rare planetary alignment to explore the outer solar system. Voyager 1 targeted Jupiter and Saturn before continuing on to chart the far edges of our solar system. Voyager 2 targeted Jupiter, Saturn, Uranus and Neptune before joining its sister probe on their ...

  19. Voyager

    With this example before them, NASA placed a more ambitious message aboard Voyager 1 and 2, a kind of time capsule, intended to communicate a story of our world to extraterrestrials. The Voyager message is carried by a phonograph record, a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and ...

  20. Voyager 1, First Craft in Interstellar Space, May Have Gone Dark

    The Pale Blue Dot is a photograph of Earth taken Feb. 14, 1990, by NASA's Voyager 1 at a distance of 3.7 billion miles ... Voyager 1 and 2 are the only such spacecraft. Before it went offline ...

  21. NASA is trying to fix Voyager 1, but the old spacecraft's days are

    NASA's Voyager 1 spacecraft is talking nonsense. Its friends on Earth are worried. This artist's impression shows one of the Voyager spacecraft moving through the darkness of space. The last time ...

  22. NASA finds clue while solving Voyager 1's communication breakdown case

    An illustration shows Voyager 1 in interstellar space (Image credit: Caltech/NASA-JPL) NASA engineers are a step closer to solving the communication problem that left the Voyager 1 spacecraft ...

  23. Voyager 1 & 2

    NASA. Jun 20, 2014. Image Article. The primary mission of Voyager 1 and 2 was the exploration of Jupiter and Saturn; after completing this objective, Voyager 1 and 2's missions were extended. The Voyager Interstellar Mission will explore the edge of the solar system and beyond.Launch: Summer 1977Operating Network: Deep Space Network.

  24. NASA scientist viewed first Voyager images. What he saw gave ...

    On Feb. 14, 1990, NASA engineers planned to turn off Voyager 1's cameras to conserve power. The flybys of glorious worlds had ended, and the journey into the farthest reaches of our solar system ...

  25. NASA gave Voyager 1 a 'poke' amid communication woes. Here's why the

    In 2012, Voyager 1 became the first spacecraft to reach interstellar space, followed in 2018 by Voyager 2, according to NA S A. The probes' main mission is to explore the far reaches of our solar ...

  26. NASA's Voyager 1 sends readable message to Earth after 4 nail-biting

    On March 1, as part of efforts to find a solution to Voyager 1's computer issues, NASA sent a command to the FDS on the spacecraft, instructing it to use different sequences in its software ...

  27. Voyager 1 sends back surprising response after 'poke' from NASA

    Meanwhile, Voyager 2 has traveled more than 12.6 billion miles (20.3 billion kilometers) from our planet. Both are in interstellar space and are the only spacecraft ever to operate beyond the ...