How the most distant object ever made by humans is spending its dying days

Voyager 1 continues to observe the farthest corners of the solar system—but it may not for long.

By Rahul Rao | Published Apr 28, 2021 4:00 PM EDT

An artist's illustration depicting Voyager 1 in interstellar space

The eyes of the world might be fixed upon Mars, where last week alone, the Ingenuity helicopter took flight and the Perseverance rover made oxygen . But farther—much farther—Voyager 1, one of the oldest space probes and the most distant human-made object from Earth, is still doing science.

The probe is well into the fourth decade of its mission, and it hasn’t come near a planet since it flew past Saturn in 1980. But even as it drifts farther and farther from a dimming sun, it’s still sending information back to Earth, as scientists recently reported in The Astrophysical Journal.

For decades, Voyager has been sailing away at around 11 miles (17 kilometers) every second. Each year, it travels another 3.5 AU (the distance between Earth and the sun) away from us. Now, it’s sending messages home even as it prepares to leave this solar system behind.

There are multiple ways to think about the “edge of the solar system.” One is a boundary region called the heliopause. That’s the frontier where the solar wind (the soup of charged particles continually thrown off by the sun) is too weak to hold off the interstellar medium—the plasma, dust, and radiation that fill the bulk of space.

When Voyager 1 left Earth in 1977, nobody was certain where the heliopause was, according to Bill Kurth , an astrophysicist at the University of Iowa who has been working with Voyager 1 since before it launched. Some scientists then even thought the heliopause was as close as 10 or even 5 AU—around the orbits of Jupiter, which Voyager 1 passed in 1979, or Saturn.

In reality, the heliopause is around 120 AU away. We know this partly because Voyager 1 crossed the heliopause in August 2012, a whole three and a half decades after it departed Earth. That puts the probe well and truly in interstellar space.

[Related: Voyager 2 can finally probe the rarified plasma surrounding our solar system ]

Out here, space is filled with interstellar medium—but you’ll not see very much of it. A cube of air at sea level on Earth contains more than a trillion times as many molecules as an equal-sized cube of even the interstellar medium’s densest parts. The region that Voyager 1 is traversing is sparser still. And for the most part, it’s quiet.

But every few years, as Voyager 1 records more data about the plasma and dust out here, it finds something . For instance, in 2012 and again in 2014, Voyager 1 felt a shock. According to Kurth, what Voyager 1 recorded was a magnetic spike, accompanied by a burst of energetic electrons that caused intense, oscillating electric fields. These shocks are the most distant effects of the sun, rippling outwards even past the heliopause.

What Voyager 1 encountered in 2020 was another jump in magnetic field strength, but without those intense electrical oscillations. Scientists instead think it’s a pressure front, a much more subtle disturbance moving out into the interstellar medium. Voyager 1 previously encountered something like it in 2017.

According to Jon Richardson , an astrophysicist at MIT who wasn’t an author on the paper, this latest finding shows that Voyager 1 is still capable of surprising scientists. Normally, he says, the probe would need to experience a shock in the surrounding plasma to measure its density. But with observations like this one, scientists have found a way to use Voyager 1 to continually monitor that density—over 13 billion miles away from us.

Richardson also says the findings show that Voyager 1 continues to feel the sun’s tendrils, billions of miles past the heliopause. “The sun is still having a major effect,” he says, “far outside the heliosphere.”

Meanwhile, Voyager 1 is still within the sun’s gravitational influence. In about 300 years, scientists expect, Voyager 1 will start to enter the inner edge of the Oort cloud, that shroud of comets which stretches as far as several light-years away.

We’ve never actually seen evidence of the Oort cloud, but sadly, Voyager 1 likely won’t be the one to reveal it. The probe is quite literally living on borrowed time. Plutonium-238, the radioisotope that powers the probe’s generator, has a half-life of about 88 years. 

[Related: Ask Us Anything: What happens to your body when you die in space? ]

As a result, Voyager 1 is starting to lose fuel. Scientists are already having to make choices about which parts of the probe they should keep functional. By the mid-2020s, it’s likely that the probe won’t be able to power even a single instrument.

Still, scientists like Kurth hope they can eke the probe’s life out to 2027, the 50th anniversary of its launch. That, Kurth says, is a milestone that none of Voyager 1’s designers could ever have foreseen.

Rahul Rao

Rahul Rao is a former intern and contributing science writer for Popular Science since early 2021. He covers physics, space, technology, and their intersections with each other and everything else. Contact the author here.

Like science, tech, and DIY projects?

Sign up to receive Popular Science's emails and get the highlights.

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now

Frequently Asked Questions

  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

Can the Voyager imaging cameras be turned back on?

What instruments on the spacecraft are still working and what have been turned off?

How long can Voyager 1 and 2 continue to function?

Voyager 1 is expected to keep its current suite of science instruments on through 2021. Voyager 2 is expected to keep its current suite of science instruments on through 2020.

The radioisotope thermoelectric generator on each spacecraft puts out 4 watts less each year. Because of this diminishing electrical power, the Voyager team has had to prioritize which instruments to keep on and which to turn off. Heaters and other spacecraft systems have also been turned off one by one as part of power management.

The Voyager team has chosen to keep operating the instruments that are the most likely to send back key data about the heliosphere and interstellar space -- the fields and particles instruments. Engineers expect to begin turning off fields and particles science instruments one by one, starting in 2020 for Voyager 2. Voyager 2 will have to start turning science instruments off sooner because it is currently operating one more instrument than Voyager 1. Engineers expect each spacecraft to continue operating at least one science instrument until around 2025.

Even if science data won't likely be collected after 2025, engineering data could continue to be returned for several more years. The two Voyager spacecraft could remain in the range of the Deep Space Network through about 2036, depending on how much power the spacecraft still have to transmit a signal back to Earth.

Where are Voyager 1 and 2 today? How do they compare to other spacecraft on an outbound trajectory?

Where is Voyager 1 going? When will it get there? How about Voyager 2?

Where do we consider our solar system to end; Pluto's orbit? Solar apex?

Have any human-made objects ever exited the solar system?

Are the distance counters rolling backwards?

Did either of the Voyagers visit Pluto? Why didn't the Voyagers fly by Pluto?

When we send spacecraft through the asteroid belt to the outer planets, how do we navigate the craft through the belt?

I was reading Dr. Carl Sagan's biography recently and found that he persuaded NASA administrators to turn one of the Voyager space probes around in order to take a last image of the solar system. Is this true? Do the craft send back any images of where they are?

I can not locate a copy of the Murmurs of Earth CD. Would you know of a vendor that might sell copies of it?

Who was on the committee with Dr. Sagan regarding the development of the Golden Record? Both American or foreign scientists?

If there is intelligent life in our universe and they were not a peace loving species, wouldn't the information on the Voyager be enough to destroy human kind?

What were the most important discoveries of the Voyager space probes?

How big is Voyager? How much does it weigh?

Is it true that a sketch by Da Vinci is included in the "Message to the Universe" of Voyagers 1 and 2?

What kind of computers are used on the Voyager spacecraft?

How fast are the Voyager computers?

What is the "direction" (constellation and/or star) both VOYAGER 1 & 2 and the Pioneers are "aimed" for, at present.

Where can I find pictures of what the Voyager spacecraft took?

Is there some sort of plate with pictograms on the Voyager 1 spacecraft? Also is it similar to the Pioneer spacecraft plaque?

July 1, 2022

21 min read

Record-Breaking Voyager Spacecraft Begin to Power Down

The pioneering probes are still running after nearly 45 years in space, but they will soon lose some of their instruments

By Tim Folger

voyager 1 still transmitting

NASA/JPL-Caltech

I f the stars hadn't aligned, two of the most remarkable spacecraft ever launched never would have gotten off the ground. In this case, the stars were actually planets—the four largest in the solar system. Some 60 years ago they were slowly wheeling into an array that had last occurred during the presidency of Thomas Jefferson in the early years of the 19th century. For a while the rare planetary set piece unfolded largely unnoticed. The first person to call attention to it was an aeronautics doctoral student at the California Institute of Technology named Gary Flandro.

It was 1965, and the era of space exploration was barely underway—the Soviet Union had launched Sputnik 1, the first artificial satellite, only eight years earlier. Flandro, who was working part-time at NASA's Jet Propulsion Laboratory in Pasadena, Calif., had been tasked with finding the most efficient way to send a space probe to Jupiter or perhaps even out to Saturn, Uranus or Neptune. Using a favorite precision tool of 20th-century engineers—a pencil—he charted the orbital paths of those giant planets and discovered something intriguing: in the late 1970s and early 1980s, all four would be strung like pearls on a celestial necklace in a long arc with Earth.

This coincidence meant that a space vehicle could get a speed boost from the gravitational pull of each giant planet it passed, as if being tugged along by an invisible cord that snapped at the last second, flinging the probe on its way. Flandro calculated that the repeated gravity assists, as they are called, would cut the flight time between Earth and Neptune from 30 years to 12. There was just one catch: the alignment happened only once every 176 years. To reach the planets while the lineup lasted, a spacecraft would have to be launched by the mid-1970s.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

voyager 1 still transmitting

READY FOR LAUNCH: Voyager 2 undergoes testing at NASA’s Jet Propulsion Laboratory before its flight ( left ). The spacecraft lifted off on August 20, 1977. Credit: NASA/JPL-Caltech

As it turned out, NASA would build two space vehicles to take advantage of that once-in-more-than-a-lifetime opportunity. Voyager 1 and Voyager 2, identical in every detail, were launched within 15 days of each other in the summer of 1977. After nearly 45 years in space, they are still functioning, sending data back to Earth every day from beyond the solar system's most distant known planets. They have traveled farther and lasted longer than any other spacecraft in history. And they have crossed into interstellar space, according to our best understanding of the boundary between the sun's sphere of influence and the rest of the galaxy. They are the first human-made objects to do so, a distinction they will hold for at least another few decades. Not a bad record, all in all, considering that the Voyager missions were originally planned to last just four years.

Early in their travels, four decades ago, the Voyagers gave astonished researchers the first close-up views of the moons of Jupiter and Saturn, revealing the existence of active volcanoes and fissured ice fields on worlds astronomers had thought would be as inert and crater-pocked as our own moon. In 1986 Voyager 2 became the first spacecraft to fly past Uranus; three years later it passed Neptune. So far it is the only spacecraft to have made such journeys. Now, as pioneering interstellar probes more than 12 billion miles from Earth, they're simultaneously delighting and confounding theorists with a series of unexpected discoveries about that uncharted region.

Their remarkable odyssey is finally winding down. Over the past three years NASA has shut down heaters and other nonessential components, eking out the spacecrafts' remaining energy stores to extend their unprecedented journeys to about 2030. For the Voyagers' scientists, many of whom have worked on the mission since its inception, it is a bittersweet time. They are now confronting the end of a project that far exceeded all their expectations.*

“We're at 44 and a half years,” says Ralph McNutt, a physicist at the Johns Hopkins University Applied Physics Laboratory (APL), who has devoted much of his career to the Voyagers. “So we've done 10 times the warranty on the darn things.”

The stars may have been cooperating, but at first, Congress wasn't. After Flandro's report, NASA drew up plans for a so-called Grand Tour that would send as many as five probes to the four giant planets and Pluto. It was ambitious. It was expensive. Congress turned it down. “There was this really grand vision,” says Linda Spilker, a JPL planetary scientist who started working on the Voyager missions in 1977, a few months before their launch. “Because of cost, it was whittled back.”

Congress eventually approved a scaled-down version of the Grand Tour, initially called Mariner Jupiter-Saturn 1977, or MJS 77. Two spacecraft were to be sent to just two planets. Nevertheless, NASA's engineers went about designing, somewhat surreptitiously, vehicles capable of withstanding the rigors of a much longer mission. They hoped that once the twin probes proved themselves, their itinerary would be extended to Uranus, Neptune, and beyond.

“Four years—that was the prime mission,” says Suzanne Dodd, who, after a 20-year hiatus from the Voyager team, returned in 2010 as the project manager. “But if an engineer had a choice to put in a part that was 10 percent more expensive but wasn't something that was needed for a four-year mission, they just went ahead and did that. And they wouldn't necessarily tell management.” The fact that the scientists were able to build two spacecraft, and that both are still working, is even more remarkable, she adds.

In terms of both engineering and deep-space navigation, this was new territory. The motto “Failure is not an option” hadn't yet been coined, and at that time it would not have been apt. In the early 1960s NASA had attempted to send a series of spacecraft to the moon to survey future landing sites for crewed missions. After 12 failures, one such effort finally succeeded.

voyager 1 still transmitting

GOLDEN RECORD: Each Voyager carries a golden record ( left ) of sounds and images from Earth in case the spacecraft are intercepted by an extraterrestrial civilization. Engineers put the cap on Voyager 1’s record before its launch ( right ). Credit: NASA/JPL-Caltech

“In those days we always launched two spacecraft” because the failure rate was so high, said Donald Gurnett, only partly in jest. Gurnett, a physicist at the University of Iowa and one of the original scientists on the Voyager team, was a veteran of 40 other space missions. He spoke with me a few weeks before his death in January. (In an obituary, his daughter Christina said his only regret was that “he would not be around to see the next 10 years of data returning from Voyager.”)

When the Voyagers were being built, only one spacecraft had used a gravity assist to reach another planet—the Mariner 10 probe got one from Venus while en route to Mercury. But the Voyagers would be attempting multiple assists with margins of error measured in tens of minutes. Jupiter, their first stop, was about 10 times farther from Earth than Mercury. Moreover, the Voyagers would have to travel through the asteroid belt along the way. Before Voyager there had been a big debate about whether spacecraft could get through the asteroid belt “without being torn to pieces,” McNutt says. But in the early 1970s Pioneer 10 and 11 flew through it unscathed—the belt turned out to be mostly empty space—paving the way for Voyager, he says.

To handle all these challenges, the Voyagers, each about the size of an old Volkswagen Beetle, needed some onboard intelligence. So NASA's engineers equipped the vehicles' computers with 69 kilobytes of memory, less than a hundred thousandth the capacity of a typical smartphone. In fact, the smartphone comparison is not quite right. “The Voyager computers have less memory than the key fob that opens your car door,” Spilker says. All the data collected by the spacecraft instruments would be stored on eight-track tape recorders and then sent back to Earth by a 23-watt transmitter—about the power level of a refrigerator light bulb. To compensate for the weak transmitter, both Voyagers carry 12-foot-wide dish antennas to send and receive signals.

“It felt then like we were right on top of the technology,” says Alan Cummings, a physicist at Caltech and another Voyager OG. “I'll tell you, what was amazing is how quickly that whole thing happened.” Within four years the MJS 77 team had built three spacecraft, including one full-scale functioning test model. The spacecraft were rechristened Voyager 1 and 2 a few months before launch.

Although many scientists have worked on the Voyagers over the decades, Cummings can make a unique claim. “I was the last person to touch the spacecraft before they launched,” he says. Cummings was responsible for two detectors designed to measure the flux of electrons and other charged particles when the Voyagers encountered the giant planets. Particles would pass through a small “window” in each detector that consisted of aluminum foil just three microns thick. Cummings worried that technicians working on the spacecraft might have accidentally dented or poked holes in the windows. “So they needed to be inspected right before launch,” he says. “Indeed, I found that one of them was a little bit loose.”

voyager 1 still transmitting

Credit: Graphic by Matthew Twombly and Juan Velasco (5W Infographic); Consultants: John Richardson (principal investigator, Voyager Plasma Science, Massachusetts Institute of Technology, Center for Space Research) and Merav Opher (professor, Department of Astronomy, Boston University)

Voyager 1 reached Jupiter in March 1979, 546 days after its launch. Voyager 2, following a different trajectory, arrived in July of that year. Both spacecraft were designed to be stable platforms for their vidicon cameras, which used red, green and blue filters to produce full-color images. They hardly spin at all as they speed through space—their rotational motion is more than 15 times slower than the crawl of a clock's hour hand, minimizing the risk of blurred images. Standing-room crowds at JPL watched as the spacecraft started transmitting the first pictures of Jupiter while still about three or four months away from the planet.

“In all of the main conference rooms and in the hallways, they had these TV monitors set up,” Spilker says. “So as the data came down line by line, each picture would appear on a monitor. The growing anticipation and the expectation of what we were going to see when we got up really, really close—that was tremendously exciting.”

Cummings vividly recalls the day he caught his first glimpse of Jupiter's third-largest moon, Io. “I was going over to a building on the Caltech campus where they were showing a livestream [of Voyager's images],” he says. “I walk in, and there's this big picture of Io, and it's all orange and black. I thought, okay, the Caltech students had pulled a prank, and it's a picture of a poorly made pizza.”

Io's colorful appearance was completely unexpected. Before the Voyagers proved otherwise, the assumption had been that all moons in the solar system would be more or less alike—drab and cratered. No one anticipated the wild diversity of moonscapes the Voyagers would discover around Jupiter and Saturn.

The first hint that there might be more kinds of moons in the heavens than astronomers had dreamed of came while the Voyagers were still about a million miles from Jupiter. One of their instruments—the Low-Energy Charged Particle [LECP] detector system—picked up some unusual signals. “We started seeing oxygen and sulfur ions hitting the detector,” says Stamatios Krimigis, who designed the LECP and is now emeritus head of the space department at Johns Hopkins APL. The density of oxygen and sulfur ions had shot up by three orders of magnitude compared with the levels measured up to that point. At first, his team thought the instrument had malfunctioned. “We scrutinized the data,” Krimigis says, “but there was nothing wrong.”

The Voyagers' cameras soon solved the mystery: Io had active volcanoes. The small world—it is slightly larger than Earth's moon—is now known to be the most volcanically active body in the solar system. “The only active volcanoes we knew of at the time were on Earth,” says Edward Stone, who has been the project scientist for the Voyager missions since 1972. “And here suddenly was a moon that had 10 times as much volcanic activity as Earth.” Io's colors—and the anomalous ions hitting Krimigis's detector—came from elements blasted from the moon's volcanoes. The largest of Io's volcanoes, known as Pele, has blown out plumes 30 times the height of Mount Everest; debris from Pele covers an area about the size of France.

voyager 1 still transmitting

The twin spacecraft took a grand tour through the giant planets of the solar system, passing by Jupiter ( 1 , 2 ) and Saturn ( 5 , 6 ) and taking the first close-up views of those planets’ moons. Jupiter’s satellite Europa ( 3 ), for instance, turned out to be covered with ice, and its moon Io ( 4 ) was littered with volcanoes—discoveries that came as a surprise to scientists who had assumed the moons would be gray and crater-pocked like Earth’s. Voyager 2 went on to fly by Uranus ( 7 ) and Neptune ( 8 ), and it is still the only probe to have visited there. Credit: NASA/JPL ( 1 , 2 , 4 , 5 , 6 , 8 ); NASA/JPL/USGS (3); NASA/JPL-Caltech ( 7 )

Altogether, the Voyagers took more than 33,000 photographs of Jupiter and its satellites. It felt like every image brought a new discovery: Jupiter had rings; Europa, one of Jupiter's 53 named moons, was covered with a cracked icy crust now estimated to be more than 60 miles thick. As the spacecraft left the Jupiter system, they got a farewell kick of 35,700 miles per hour from a gravity assist. Without it they would not have been able to overcome the gravitational pull of the sun and reach interstellar space.

At Saturn, the Voyagers parted company. Voyager 1 hurtled through Saturn's rings (taking thousands of hits from dust grains), flew past Titan, a moon shrouded in orange smog, and then headed “north” out of the plane of the planets. Voyager 2 continued alone to Uranus and Neptune. In 1986 Voyager 2 found 10 new moons around Uranus and added the planet to the growing list of ringed worlds. Just four days after Voyager 2's closest approach to Uranus, however, its discoveries were overshadowed when the space shuttle Challenger exploded shortly after launch. All seven of Challenger 's crew members were killed, including Christa McAuliffe, a high school teacher from New Hampshire who would have been the first civilian to travel into space.

Three years later, passing about 2,980 miles above Neptune's azure methane atmosphere, Voyager 2 measured the highest wind speeds of any planet in the solar system: up to 1,000 mph. Neptune's largest moon, Triton, was found to be one of the coldest places in the solar system, with a surface temperature of −391 degrees Fahrenheit (−235 degrees Celsius). Ice volcanoes on the moon spewed nitrogen gas and powdery particles five miles into its atmosphere.

Voyager 2's images of Neptune and its moons would have been the last taken by either of the spacecraft had it not been for astronomer Carl Sagan, who was a member of the mission's imaging team. With the Grand Tour officially completed, NASA planned to turn off the cameras on both probes. Although the mission had been extended with the hope that the Voyagers would make it to interstellar space—it had been officially renamed the Voyager Interstellar Mission—there would be no photo ops after Neptune, only the endless void and impossibly distant stars.

voyager 1 still transmitting

ERUPTION: The discovery of the volcano Pele, shown in this photograph from Voyager 1, confirmed that Jupiter’s moon hosts active volcanism. Credit: NASA/JPL/USGS

Sagan urged NASA officials to have Voyager 1 transmit one last series of images. So, on Valentine's Day in 1990, the probe aimed its cameras back toward the inner solar system and took 60 final shots. The most haunting of them all, made famous by Sagan as the “Pale Blue Dot,” captured Earth from a distance of 3.8 billion miles. It remains the most distant portrait of our planet ever taken. Veiled by wan sunlight that reflected off the camera's optics, Earth is barely visible in the image. It doesn't occupy even a full pixel.

Sagan, who died in 1996, “worked really hard to convince NASA that it was worth looking back at ourselves,” Spilker says, “and seeing just how tiny that pale blue dot was.”

Both Voyagers are now so far from Earth that a one-way radio signal traveling at the speed of light takes almost 22 hours to reach Voyager 1 and just over 18 to catch up with Voyager 2. Every day they move away by another three to four light-seconds. Their only link to Earth is NASA's Deep Space Network, a trio of tracking complexes spaced around the globe that enables uninterrupted communication with spacecraft as Earth rotates. As the Voyagers recede from us in space and time, their signals are becoming ever fainter. “Earth is a noisy place,” says Glen Nagle, outreach and communications manager at the Deep Space Network's facility in Canberra, Australia. “Radios, televisions, cell phones—everything makes noise. And so it gets harder and harder to hear these tiny whispers from the spacecraft.”

Faint as they are, those whispers have upended astronomers' expectations of what the Voyagers would find as they entered the interstellar phase of the mission. Stone and other Voyager scientists I spoke with cautioned me not to conflate the boundary of interstellar space with that of the solar system. The solar system includes the distant Oort cloud, a spherical collection of cometlike bodies bound by the sun's gravity that may stretch halfway to the closest star. The Voyagers won't reach its near edge for at least another 300 years. But interstellar space lies much closer at hand. It begins where a phenomenon called the solar wind ends.

Like all stars, the sun emits a constant flow of charged particles and magnetic fields—the solar wind. Moving at hypersonic speeds, the wind blows out from the sun like an inflating balloon, forming what astronomers call the heliosphere. As the solar wind billows into space, it pulls the sun's magnetic field along for the ride. Eventually pressure from interstellar matter checks the heliosphere's expansion, creating a boundary—preceded by an enormous shock front, the “termination shock”—with interstellar space. Before the Voyagers' journeys, estimates of the distance to that boundary with interstellar space, known as the heliopause, varied wildly.

“Frankly, some of them were just guesses,” according to Gurnett. One early guesstimate located the heliopause as close as Jupiter. Gurnett's own calculations, made in 1993, set the distance at anywhere from 116 to 177 astronomical units, or AU—about 25 times more distant. (One AU is the distance between Earth and the sun, equal to 93 million miles.) Those numbers, he says, were not very popular with his colleagues. By 1993 Voyager 1 already had 50 AU on its odometer. “If [the heliopause] was at 120 AU, that meant we had another 70 AU to go.” If Gurnett was right, the Voyagers, clipping along at about 3.5 AU a year, wouldn't exit the heliosphere for at least another two decades.

That prediction raised troubling questions: would the Voyagers—or the support of Congress—last that long? The mission's funding had been extended on the expectation that the spacecraft would cross the heliopause at about 50 AU. But the spacecraft left that milestone behind without finding any of the anticipated signs of interstellar transit. Astronomers had expected the Voyagers to detect a sudden surge in galactic cosmic rays—high-energy particles sprayed like shrapnel at nearly the speed of light from supernovae and other deep-space cataclysms. The vast magnetic cocoon formed by the heliosphere deflects most low-energy cosmic rays before they can reach the inner solar system. “[It] shields us from at least 75 percent of what's out there,” Stone says.

The Voyager ground team was also waiting for the spacecraft to register a shift in the prevailing magnetic field. The interstellar magnetic field, thought to be generated by nearby stars and vast clouds of ionized gases, would presumably have a different orientation from the magnetic field of the heliosphere. But the Voyagers had detected no such change.

voyager 1 still transmitting

Gurnett's 1993 estimates were prescient. Almost 20 years passed before one of the Voyagers finally made it to the heliopause. During that time the mission narrowly survived threats to its funding, and the Voyager team shrank from hundreds of scientists and engineers to a few dozen close-knit lifers. Most of them remain on the job today. “When you have such a long-lived mission, you start to regard people like family,” Spilker says. “We had our kids around the same time. We'd take vacations together. We're spanning multiple generations now, and some of the younger people on Voyager were not even born [when the spacecraft] launched.”

The tenacity and commitment of that band of brothers and sisters were rewarded on August 25, 2012, when Voyager 1 finally crossed the heliopause. But some of the data it returned were baffling. “We delayed announcing that we had reached interstellar space because we couldn't come to an agreement on the fact,” Cummings says. “There was lots of debate for about a year.”

Although Voyager 1 had indeed found the expected jump in plasma density—its plasma-wave detector, an instrument designed by Gurnett, inferred an 80-fold increase—there was no sign of a change in the direction of the ambient magnetic field. If the vehicle had crossed from an area permeated by the sun's magnetic field to a region where the magnetic field derived from other stars, shouldn't that switch have been noticeable? “That was a shocker,” Cummings says. “And that still bothers me. But a lot of people are coming to grips with it.”

When Voyager 2 reached the interstellar shoreline in November 2018, it, too, failed to detect a magnetic field shift. And the spacecraft added yet another puzzle: it encountered the heliopause at 120 AU from Earth—the same distance marked by its twin six years earlier. That did not jibe with any theoretical models, all of which said the heliosphere should expand and contract in sync with the sun's 11-year cycle. During that period the solar wind ebbs and surges. Voyager 2 arrived when the solar wind was peaking, which, if the models were correct, should have pushed the heliopause farther out than 120 AU. “It was unexpected by all the theorists,” Krimigis says. “I think the modeling, in terms of the findings of the Voyagers, has been found wanting.”

Now that the Voyagers are giving theorists some real field data, their models of the interaction between the heliosphere and the interstellar environment are becoming more complex. “The sort of general picture is that [our sun] emerged from a hot, ionized region” and entered a spotty, partly ionized area in the galaxy, says Gary Zank, an astrophysicist at the University of Alabama in Huntsville. The hot region likely formed in the aftermath of a supernova—some nearby ancient star, or perhaps a few, exploded at the end of its life and heated up the space, stripping electrons off their atoms in the process. The boundary around that region can be thought of as “kind of like the seashore, with all the water and the waves swirling and mixed up. We're in that kind of turbulent region ... magnetic fields get twisted up, turned around. It's not like the smooth magnetic fields that theorists usually like to draw,” although the amount of turbulence seen can differ depending on the type of observation. The Voyagers' data show little field variation at large scales but many small-scale fluctuations around the heliopause, caused by the heliosphere's influence on the interstellar medium. At some point, it is thought, the spacecraft will leave those roiling shoals behind and at last encounter the unalloyed interstellar magnetic field.

Or maybe that picture is completely wrong. A few researchers believe that the Voyagers have not yet left the heliosphere. “There is no reason for the magnetic fields in the heliosphere and the interstellar medium to have exactly the same orientation,” says Len A. Fisk, a space plasma scientist at the University of Michigan and a former NASA administrator. For the past several years Fisk and George Gloeckler, a colleague at Michigan and a longtime Voyager mission scientist, have been working on a model of the heliosphere that pushes its edge out by another 40 AU.

Most people working in the field, however, have been convinced by the dramatic uptick in galactic cosmic rays and plasma density the Voyagers measured. “Given that,” Cummings says, “it's very difficult to argue that we're not really in interstellar space. But then again, it's not like everything fits. That's why we need an interstellar probe.”

McNutt has been pushing for such a mission for decades. He and his colleagues at Johns Hopkins recently completed a nearly 500-page report outlining plans for an interstellar probe that would launch in 2036 and potentially could reach the heliosphere within 15 years, shaving 20 years off Voyager 1's flight time. And unlike the Voyager missions, the interstellar probe would be designed specifically to study the outer edge of the heliosphere and its environs. Within the next two years the National Academies of Sciences, Engineering, and Medicine will decide whether the mission should be one of NASA's priorities for the next decade.

An interstellar probe could answer one of the most fundamental questions about the heliosphere. “If I'm looking from the outside, what the devil does this structure look like?” McNutt asks. “We really don't know. It's like trying to understand what a goldfish bowl looks like from the point of view of the goldfish. We [need to] be able to see the bowl from the outside.” In some models, as the heliosphere cruises along at 450,000 mph, interstellar matter flows smoothly past it, like water around the bow of a ship, resulting in an overall cometlike shape. One recent computer model, developed by astronomer Merav Opher and her colleagues at Boston University, predicts that more turbulent dynamics give the heliosphere a shape like a cosmic croissant.

“You can start multiple fights at any good science conference about that,” McNutt says, “but it's going to take getting out there and actually making some measurements to be able to see what's going on. It would be nice to know what the neighborhood looks like.”

Some things outlive their purpose—answering machines, VCRs, pennies. Not the Voyagers—they transcended theirs, using 50-year-old technology. “The amount of software on these instruments is slim to none,” Krimigis says. “There are no microprocessors—they didn't exist!” The Voyagers' designers could not rely on thousands of lines of code to help operate the spacecraft. “On the whole,” Krimigis says, “I think the mission lasted so long because almost everything was hardwired. Today's engineers don't know how to do this. I don't know if it's even possible to build such a simple spacecraft [now]. Voyager is the last of its kind.”

It won't be easy to say goodbye to these trailblazing vehicles. “It's hard to see it come to an end,” Cummings says. “But we did achieve something really amazing. It could have been that we never got to the heliopause, but we did.”

Voyager 2 now has five remaining functioning instruments, and Voyager 1 has four. All are powered by a device that converts heat from the radioactive decay of plutonium into electricity. But with the power output decreasing by about four watts a year, NASA has been forced into triage mode. Two years ago the mission's engineers turned off the heater for the cosmic-ray detector, which had been crucial in determining the heliopause transit. Everyone expected the instrument to die.

“The temperature dropped like 60 or 70 degrees C, well outside any tested operating limits,” Spilker says, “and the instrument kept working. It was incredible.”

The last two Voyager instruments to turn off will probably be a magnetometer and the plasma science instrument. They are contained in the body of the spacecraft, where they are warmed by heat emitted from computers. The other instruments are suspended on a 43-foot-long fiberglass boom. “And so when you turn the heaters off,” Dodd says, “those instruments get very, very cold.”

How much longer might the Voyagers last? “If everything goes really well, maybe we can get the missions extended into the 2030s,” Spilker says. “It just depends on the power. That's the limiting point.”

voyager 1 still transmitting

TINY SPECK: Among Voyager 1’s last photographs was this shot of Earth seen from 3.8 billion miles away, dubbed the “Pale Blue Dot” by Voyager scientist Carl Sagan. Credit: NASA/JPL-Caltech

Even after the Voyagers are completely muted, their journeys will continue. In another 16,700 years, Voyager 1 will pass our nearest neighboring star, Proxima Centauri, followed 3,600 years later by Voyager 2. Then they will continue to circle the galaxy for millions of years. They will still be out there, more or less intact, eons after our sun has collapsed and the heliosphere is no more, not to mention one Pale Blue Dot. At some point in their travels, they may manage to convey a final message. It won't be transmitted by radio, and if it's received, the recipients won't be human.

The message is carried on another kind of vintage technology: two records. Not your standard plastic version, though. These are made of copper, coated with gold and sealed in an aluminum cover. Encoded in the grooves of the Golden Records , as they are called, are images and sounds meant to give some sense of the world the Voyagers came from. There are pictures of children, dolphins, dancers and sunsets; the sounds of crickets, falling rain and a mother kissing her child; and 90 minutes of music, including Bach's Brandenburg Concerto No. 2 and Chuck Berry's “Johnny B. Goode.”

And there is a message from Jimmy Carter, who was the U.S. president when the Voyagers were launched. “We cast this message into the cosmos,” it reads in part. “We hope someday, having solved the problems we face, to join a community of galactic civilizations. This record represents our hope and our determination, and our good will in a vast and awesome universe.”

*Editor’ Note (6/22/22): This paragraph was edited after posting to correct the description of when NASA began shutting down nonessential components of the Voyager spacecraft.

Tim Folger is a freelance journalist who writes for National Geographic , Discover , and other national publications.

Scientific American Magazine Vol 327 Issue 1

Engineers Investigating NASA’s Voyager 1 Telemetry Data

voyager 1 still transmitting

NASA’s Voyager 1 spacecraft, shown in this illustration, has been exploring our solar system since 1977, along with its twin, Voyager 2.

While the spacecraft continues to return science data and otherwise operate as normal, the mission team is searching for the source of a system data issue.

The engineering team with NASA’s Voyager 1 spacecraft is trying to solve a mystery: The interstellar explorer is operating normally, receiving and executing commands from Earth, along with gathering and returning science data. But readouts from the probe’s attitude articulation and control system (AACS) don’t reflect what’s actually happening onboard.

The AACS controls the 45-year-old spacecraft’s orientation. Among other tasks, it keeps Voyager 1’s high-gain antenna pointed precisely at Earth, enabling it to send data home. All signs suggest the AACS is still working, but the telemetry data it’s returning is invalid. For instance, the data may appear to be randomly generated, or does not reflect any possible state the AACS could be in.

The issue hasn’t triggered any onboard fault protection systems, which are designed to put the spacecraft into “safe mode” – a state where only essential operations are carried out, giving engineers time to diagnose an issue. Voyager 1’s signal hasn’t weakened, either, which suggests the high-gain antenna remains in its prescribed orientation with Earth.

Get the Latest JPL News

The team will continue to monitor the signal closely as they continue to determine whether the invalid data is coming directly from the AACS or another system involved in producing and sending telemetry data. Until the nature of the issue is better understood, the team cannot anticipate whether this might affect how long the spacecraft can collect and transmit science data.

Voyager 1 is currently 14.5 billion miles (23.3 billion kilometers) from Earth, and it takes light 20 hours and 33 minutes to travel that difference. That means it takes roughly two days to send a message to Voyager 1 and get a response – a delay the mission team is well accustomed to.

“A mystery like this is sort of par for the course at this stage of the Voyager mission,” said Suzanne Dodd, project manager for Voyager 1 and 2 at NASA’s Jet Propulsion Laboratory in Southern California. “The spacecraft are both almost 45 years old, which is far beyond what the mission planners anticipated. We’re also in interstellar space – a high-radiation environment that no spacecraft have flown in before. So there are some big challenges for the engineering team. But I think if there’s a way to solve this issue with the AACS, our team will find it.”

It’s possible the team may not find the source of the anomaly and will instead adapt to it, Dodd said. If they do find the source, they may be able to solve the issue through software changes or potentially by using one of the spacecraft’s redundant hardware systems.

It wouldn’t be the first time the Voyager team has relied on backup hardware: In 2017, Voyager 1’s primary thrusters showed signs of degradation, so engineers switched to another set of thrusters that had originally been used during the spacecraft’s planetary encounters . Those thrusters worked, despite having been unused for 37 years.

Voyager 1’s twin, Voyager 2 (currently 12.1 billion miles, or 19.5 billion kilometers, from Earth), continues to operate normally.

Launched in 1977, both Voyagers have operated far longer than mission planners expected, and are the only spacecraft to collect data in interstellar space. The information they provide from this region has helped drive a deeper understanding of the heliosphere, the diffuse barrier the Sun creates around the planets in our solar system.

Each spacecraft produces about 4 fewer watts of electrical power a year, limiting the number of systems the craft can run. The mission engineering team has switched off various subsystems and heaters in order to reserve power for science instruments and critical systems. No science instruments have been turned off yet as a result of the diminishing power, and the Voyager team is working to keep the two spacecraft operating and returning unique science beyond 2025.

While the engineers continue to work at solving the mystery that Voyager 1 has presented them, the mission’s scientists will continue to make the most of the data coming down from the spacecraft’s unique vantage point.

More About the Mission

The Voyager spacecraft were built by JPL, which continues to operate both. JPL is a division of Caltech in Pasadena. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

For more information about the Voyager spacecraft, visit:

https://www.nasa.gov/voyager

News Media Contact

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

[email protected]

NASA’s Voyager 1 Is Glitching, Sending Nonsense From Interstellar Space

The aging spacecraft, launched in 1977, is transmitting a gibberish pattern of ones and zeros back to Earth

Margaret Osborne

Margaret Osborne

Daily Correspondent

Illustration of a spacecraft

NASA’s Voyager 1 probe is experiencing a glitch that’s causing it to send a repeating, gibberish pattern of ones and zeroes back to Earth, the agency announced this week. The spacecraft is still able to receive and execute commands sent to it, but it’s unable to transmit back science or engineering data. 

After ruling out other possibilities, the Voyager team determined the spacecraft’s issues stem from one of its three computers, called the flight data system (FDS). Last weekend, engineers tried to restart the FDS to see whether they could resolve the problem, but the probe still isn’t returning usable data, according to NASA. 

Launched in 1977, Voyager 1 and its twin spacecraft Voyager 2 are NASA’s longest-operating mission. They are the only probes to ever explore interstellar space , or the vast area between stars. The spacecraft were initially launched to study Jupiter and Saturn, and they were only intended to last five years . But after making a series of discoveries—including spotting active volcanoes on Jupiter’s moon Io—NASA extended their mission. Both spacecraft carry a “ golden record ,” a 12-inch, gold-plated, copper disk that contains sounds and images to represent humankind in case any extraterrestrials ever encounter them.

My twin Voyager 1 is having a bit of trouble with its Flight Data System, but our team is on it! Details from @NASAJPL below. -V2 https://t.co/DRnxCzYLv5 — NASA Voyager (@NASAVoyager) December 12, 2023

By today’s standards, the technology aboard the Voyager crafts is ancient. Their computers only have 69.63 kilobytes of memory —about enough to store an average jpeg file. To make room for new observations, they must erase data after sending it to Earth.

“The Voyager computers have less memory than the key fob that opens your car door,” Linda Spilker , a planetary scientist who started working on the Voyager missions in 1977, told Scientific American ’s Tim Folger last year.

But the simple, yet hardy design of the Voyagers has contributed to their longevity and allowed them to hop between missions to collect valuable data. Still, both aging spacecraft have experienced glitches. Over the summer, a human error caused Voyager 2’s antenna to tilt two degrees away from Earth , leading researchers to lose contact with the craft for more than a week before its functions returned to normal. In 2022, an issue in the attitude articulation and control system (AACS) of Voyager 1 caused it to send “garbled information about its health and activities to mission controllers, despite operating normally,” per NASA . Engineers were eventually able to solve the glitch. 

Right now, Voyager 1 is hurtling through space about 15 billion miles from Earth and Voyager 2 is more than 12.6 billion miles away. Because the spacecraft are so distant, commands from mission controllers take 22.5 hours to reach Voyager 1. This means it takes 45 hours to determine whether a command to the spacecraft has had the intended outcome. NASA says it could take several weeks to develop a new plan to fix the current FDS problem. 

“Finding solutions to challenges the probes encounter often entails consulting original, decades-old documents written by engineers who didn’t anticipate the issues that are arising today,” NASA says in its statement. “As a result, it takes time for the team to understand how a new command will affect the spacecraft’s operations in order to avoid unintended consequences.” 

Calla Cofield, a media relations specialist at NASA’s Jet Propulsion Laboratory, which manages the mission, tells CNN ’s Ashley Strickland engineers are now working to find the underlying cause of the problem before figuring out next steps. 

“The Voyagers are performing far, far past their prime missions and longer than any other spacecraft in history,” Cofield tells the publication. “So, while the engineering team is working hard to keep them alive, we also fully expect issues to arise.”

Get the latest stories in your inbox every weekday.

Margaret Osborne

Margaret Osborne | | READ MORE

Margaret Osborne is a freelance journalist based in the southwestern U.S. Her work has appeared in the  Sag Harbor Express  and has aired on  WSHU Public Radio.

voyager 1 still transmitting

Advertisement

How are the Voyager spacecraft able to transmit radio messages so far?

  • Share Content on Facebook
  • Share Content on LinkedIn
  • Share Content on Flipboard
  • Share Content on Reddit
  • Share Content via Email

The front of a spaceship, showing the control panel.

The two Voyage spacecraft certainly have had an amazing track record. They were sent to photograph planets like Jupiter, Saturn and Neptune and have just kept on going past the outer edge of the solar system. Voyager 1 is currently over 7 billion miles (about 11 billion kilometers) away from Earth and is still transmitting -- it takes about 10 hours for the signal to travel from the spacecraft to Earth!

The Voyager spacecraft use 23-watt radios. This is higher than the 3 watts a typical cell phone uses, but in the grand scheme of things it is still a low-power transmitter. Big radio stations on Earth transmit at tens of thousands of watts and they still fade out fairly quickly.

The key to receiving the signals is therefore not the power of the radio, but a combination of three other things:

  • Very large antennas
  • Directional antennas that point right at each other
  • Radio frequencies without a lot of man-made interference on them

The antennas that the Voyager spacecraft use are big. You may have seen people who have large satellite dish antennas in their yards. These are typically 2 or 3 meters (6 to 10 feet) in diameter. The Voyager spacecraft has an antenna that is 3.7 meters (14 feet) in diameter, and it transmits to a 34 meter (100 feet or so) antenna on Earth. The Voyager antenna and the Earth antenna are pointed right at each other. When you compare your phone's stubby, little omni-directional antenna to a 34 meter directional antenna, you can see the main thing that makes a difference!

The Voyager satellites are also transmitting in the 8 GHz range , and there is not a lot of interference at this frequency. Therefore the antenna on Earth can use an extremely sensitive amplifier and still make sense of the faint signals it receives. Then when the earth antenna transmits back to the spacecraft, it uses extremely high power (tens of thousands of watts) to make sure the spacecraft gets the message.

Frequently Asked Questions

What role do earth's ground stations play in receiving signals from distant spacecraft like voyager, how has technology advanced to maintain communication with voyager as it moves further away.

Please copy/paste the following text to properly cite this HowStuffWorks.com article:

14.6 billion miles away, NASA gets Voyager 1 talking again — and discovers a new mystery

That’s some repair job.

An artist's impression (circa 1977) of the trajectory to be taken by NASA's Voyager 1 and Voyager 2 ...

NASA’s Voyager 1 is on a fraught and unknowable journey into deep space. Some 14.6 billion miles from Earth, it and its sister craft, Voyager 2, are the furthest human-made objects from our planet, having made it beyond the edges of the Solar System and out into the interstellar medium. At such distances, anything can go wrong. Add to that the fact that these are old craft: The Voyagers launched in the 1970s. So when Voyager 1 started to send home weird, garbled nonsense instead of telemetry data in May of this year , NASA engineers might have been forgiven for calling it a day and pouring one out for perhaps the most successful space mission of all time.

But that’s not how NASA works . Instead, they started working on a remote diagnosis and fix for the record-breaking spacecraft. Now, some four months later, they are triumphant. Voyager 1 is back online and communicating perfectly with ground control as if it never happened. In fact, the fix turned out to be relatively simple — or as simple as anything can be with a 22-hour communications lag in each direction and billions of miles of space in between.

What happened to Voyager 1?

color illustration of a spacecraft in space with a large radio antenna on the left side

The high-gain antenna, shown on the left in this illustration, is how Voyager 1 sends and receives radio communications with NASA engineers here on Earth.

Cruising in interstellar space, the 45-year-old spacecraft appeared to be operating shockingly well and was transmitting reams of data back to Earth. But in mid-May, Voyager 1’s onboard system responsible for keeping its high-gain antenna pointed at Earth, known as the attitude articulation and control system, or AACS, started beaming home confusing jumbles of data instead of the usual reports about the spacecraft’s health and status. From our viewpoint, it appeared as if the spacecraft had developed something like an electronic version of aphasia — a condition that causes the loss of fluent speech.

“The data may appear to be randomly generated, or does not reflect any possible state the AACS could be in,” explained NASA in a statement from the time.

Even more bafflingly for engineers, Voyager 1 appeared to be in perfect condition despite the spacecraft’s bizarre status reports. The radio signal from the ship remained strong and steady, which meant the antenna was still pointed at Earth — and not in whatever configuration the AACS was claiming it was in to NASA in the reports. Similarly, Voyager 1’s science systems kept gathering and transmitting data as usual, without any of the same strangeness affecting the AACS. And, whatever was wrong with the AACS didn’t trip a fault protection system designed to put the spacecraft in safe mode when there’s a glitch.

Thankfully, NASA engineers diagnosed the problem. And with the diagnosis, they could employ a cure.

The fix — It turned out that the AACS had started sending its telemetry data via an onboard computer that had stopped working years ago. The dead computer corrupted all the outgoing data. All NASA engineers had to do was send the command to the AACS to use the correct computer to send its data home.

But there’s still a problem — The next challenge will be to figure out exactly what caused the AACS to switch computers in the first place. NASA says the system probably received a faulty command from another onboard computer. While they say it is not a major concern for Voyager 1’s well-being right now, the true culprit will need to be found and fixed to prevent future weirdness.

Voyager 1 lives on

Colour photograph of the planet Saturn, taken from Voyager 1. Voyager 1 is a space probe launched by...

Voyager 1 has yielded revelations about our Solar System no one could have predicted.

Currently, Voyager 1 is more than 23.4 billion kilometers or 14.6 billion miles (and gaining, most of the time ) from Earth. You can watch the distance grow and see both Voyager spacecraft’s current positions in space on NASA’s website .

For the last decade, Voyager 1 has been cruising in interstellar space, beyond the reach of our Sun’s magnetic field. The field had offered the craft a little protection from cosmic rays and other interstellar radiation, much as Earth’s magnetic field offers some protection from high-energy particles and radiation from the Sun. Cosmic rays are known to interfere with electronics here on Earth — when one of those high-speed energetic particles strikes a computer chip, it can cause small memory errors, which add up over time — and it’s reasonable to expect that to be an issue for Voyager 1’s onboard computers, too.

“A mystery like this is sort of par for the course at this stage of the Voyager mission,” said Voyager 1 and 2 project manager Suzanne Dodd in a statement dated to May.

“The spacecraft are both almost 45 years old, which is far beyond what the mission planners anticipated. We’re also in interstellar space — a high-radiation environment that no spacecraft have flown in before.”

We’ll need to wait and see what new perils encounter Voyager next on its travels — and what new discoveries await.

Subscribe for free to Inverse’s award-winning daily newsletter.

This article was originally published on Aug. 31, 2022

  • Space Science

voyager 1 still transmitting

NASA is investigating this 'mystery' data coming from Voyager 1

liam-tung

NASA scientists are trying to make sense of buggy system data the interstellar Voyager spacecraft is transmitting from about 20 light-hours away from Earth, some 45 years after it launched. 

Voyager 1 launched in September 1977 and is now the farthest spacecraft from Earth, traveling in space at about 14.5 billion miles (23.3 billion kilometers) away. It would take light about 20 hours to travel from the spacecraft. 

  • What is Artemis? Everything you need to know about NASA's new moon mission
  • NASA has solved the mystery of Voyager 1's strange data transmissions
  • NASA's new tiny, high-powered laser could find water on the Moon
  • NASA is blazing an inspirational trail. We need to make sure everyone can follow it

NASA's Jet Propulsion Laboratory is investigating a glitch in the system data the interstellar explorer is collecting. Readouts from the probe's attitude articulation and control system (AACS) "don't reflect what's actually happening onboard", according to JPL.

SEE: NASA's Mars lander is running out of power. Here's what happens next

Everything about the AACS suggests it is functioning normally, yet the telemetry data it's sending back to Earth is "invalid", producing what appears to be randomly generated data that doesn't match any possible state the system could be in. 

The AACS controls the Voyager 1's orientation and keeps its high-gain antenna trained on Earth for optimal data transmission. 

The spacecraft would be put into a functionally reduced 'safe mode' if Its onboard fault-protection systems had been triggered. Its signal remains strong but the data appears to be malformed, according to NASA JPL.    

NASA considers anomalies like this to be normal for a spacecraft of its age. 

"A mystery like this is sort of par for the course at this stage of the Voyager mission," Suzanne Dodd, project manager for Voyager 1 and 2 at NASA's Jet Propulsion Laboratory in Southern California, said in a statement .  

"The spacecraft are both almost 45 years old, which is far beyond what the mission planners anticipated. We're also in interstellar space – a high-radiation environment that no spacecraft have flown in before. So there are some big challenges for the engineering team. But I think if there's a way to solve this issue with the AACS, our team will find it."

Dodd said the team could just "adapt" to the glitch if they can't identify the source of it. If the source is found, it could be fixed by a software update or via one of the spacecraft's redundant hardware systems.

SEE: NASA's Mars helicopter just took these remarkable photos of the rover's landing gear

Voyager 1 was launched from Cape Canaveral after the Voyager 2 took off, but because of its faster route, it overtook its twin to fly by Jupiter in 1979 and then Saturn in 1980, according to NASA. It's also gone further than Voyager 2, which is currently traveling about 12.1 billion miles from Earth.

The Voyager 1 was the first human-made object to reach into interstellar space and in 1998 overtook NASA's Pioneer 10 to become the most distant human-made object. It reached interstellar space in August 2012 and, among other things, takes measurements of the density of material in interstellar space . It will eventually exit the solar system but not for a long, long time.

"If we define our solar system as the Sun and everything that primarily orbits the Sun, Voyager 1 will remain within the confines of the solar system until it emerges from the Oort cloud in another 14,000 to 28,000 years," NASA notes . 

Both Voyagers carry a message on a gold-plated copper disc in case extraterrestrials find the spacecraft one day. It also includes a player and instructions describing how to play the content. The disc includes greetings in 55 languages and 90 minutes of mostly Western music. 

As AI agents spread, so do the risks, scholars say

The best travel vpns: expert tested, the best satellite phones you can buy.

NASA's Voyager 1 probe in interstellar space can't phone home (again) due to glitch

Right now, the only data the probe is sending back to Earth is binary gobbledygook.

Artist's illustration of Voyager 1 probe looking back at the solar system from a great distance.

NASA's Voyager 1 probe is currently unable to transmit any scientific or systems data back to Earth. The 46-year-old spacecraft is capable of receiving commands, but a problem seems to have arisen with the probe's computers.

Voyager 1's flight data system (FDS), which collects onboard engineering information and data from the spacecraft's scientific instruments, is no longer communicating as expected with the probe's telecommunications unit (TMU), according to a NASA blog post on Dec. 12. 

When functioning properly, the FDS compiles the spacecraft's info into a data package, which is then transmitted back to Earth using the TMU. Lately, that data package has been "stuck," the blog post said, "transmitting a repeating pattern of ones and zeros." Voyager's engineering team traced the problem back to the FDS, but it could be weeks before a solution is found. 

Related: NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

Voyager 1 , and its twin spacecraft Voyager 2 , launched in 1977 and have been operational longer than any other spacecraft in history. Both are in interstellar space , speeding into the cosmos more than 15 billion miles (24 billion kilometers) from Earth. 

They are so far away, in fact, that it takes nearly a day (22.5 hours) for a transmission to reach the spacecraft, and another day to receive any sort of response. A single back-and-forth communication with Voyager 1 takes 45 hours. So, whenever NASA engineers are able to send a fix for the probe's FDS, they will have to wait until the following day to find out if it works. 

And the solution won't be as simple as just turning the system on and off again (they tried that — it didn't work). The spacecraft's age and hardware present a unique set of challenges. NASA technicians must work within the framework and technology available to their predecessors in the 1970s, sometimes forcing some creative software work-arounds.

This isn't the first malfunction Voyager 1 has experienced in recent years. Issues with the probe's attitude articulation and control system (AACS) were noticed in May 2022, and persisted transmitting nonsense telemetry data for several months before a workaround was found.

—  Voyager turns 45: What the iconic mission taught us and what's next

—  Scientists' predictions for the long-term future of the Voyager Golden Records will blow your mind

—  NASA's twin Voyager probes are nearly 45 — and facing some hard decisions  

Another update came in October 2023, with a software patch to help ultimately solve that issue, and also prevent residue build-up on the probes' thrusters. But these kinds of updates don't come quickly. NASA's blog clarifies, "finding solutions to challenges the probes encounter often entails consulting original, decades-old documents written by engineers who didn’t anticipate the issues that are arising today. As a result, it takes time for the team to understand how a new command will affect the spacecraft’s operations in order to avoid unintended consequences."

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Josh Dinner

Josh Dinner is Space.com's Content Manager. He is a writer and photographer with a passion for science and space exploration, and has been working the space beat since 2016. Josh has covered the evolution of NASA's commercial spaceflight partnerships, from early Dragon and Cygnus cargo missions to the ongoing development and launches of crewed missions from the Space Coast, as well as NASA science missions and more. He also enjoys building 1:144 scale models of rockets and human-flown spacecraft. Find some of Josh's launch photography on Instagram and his website , and follow him on Twitter , where he mostly posts in haiku.

NASA's Voyager 1 glitch has scientists sad yet hopeful: 'Voyager 2 is still going strong'

NASA's interstellar Voyager 1 spacecraft isn't doing so well — here's what we know

The James Webb Space Telescope may have found some of the very 1st stars

Most Popular

By Brett Tingley March 04, 2024

By Tariq Malik March 04, 2024

By Jeff Spry March 04, 2024

By Fionagh Thomson March 04, 2024

By Monisha Ravisetti March 04, 2024

By Mike Wall March 04, 2024

By Robert Z. Pearlman March 04, 2024

By Robert Lea March 04, 2024

By Samantha Mathewson March 04, 2024

By Rahul Rao March 04, 2024

  • 2 VR could help astronauts avoid seasickness during splashdown and recovery
  • 3 Our solar system's ocean moons may be habitable — and their icy shells could hold proof
  • 4 Scientists made a 'digital twin' of Earth to simulate possible natural disasters
  • 5 Total solar eclipse 2024: Live updates

Interesting Engineering

NASA engineers rally to save voyager 1, the icon of space exploration

N ASA engineers are undertaking their last rounds of efforts in a final push to re-establish communication with Voyager 1. As the second-longest operating spacecraft in history, Voyager 1 has ventured more than 24 billion kilometers (15 billion miles) from Earth, securing its place as the farthest-traveled object crafted by humanity.

NASA announced in a statement that since mid-November 2023, the interstellar Voyager 1 probe has encountered difficulties transmitting data gathered by its scientific instruments back to Earth.

Launched in 1977, Voyager 1 is not just the first spacecraft to travel into interstellar space (making it the farthest human-made object ever), but it has also made some other substantial discoveries. It found new moons around Jupiter, spotted another ring around Saturn, and took a special picture of all the planets together in one shot, like a big family photo.

"Sad and frustrated to have the spacecraft still working but muted. Even though we know the end could come at any time, losing a spacecraft is never easy. Especially one like Voyager 1," said Bruce Waggoner, the Voyager mission assurance manager, in a conversation with Space.com . 

Flight data system

NASA engineers are currently addressing an issue concerning one of the three onboard computers of Voyager 1, known as the flight data system (FDS). Although the spacecraft is successfully receiving and executing commands from Earth, the FDS is experiencing communication difficulties with one of its subsystems, the telemetry modulation unit (TMU). Consequently, according to NASA, no scientific or engineering data is being transmitted back to Earth. 

The FDS has multiple functions, including collecting data from scientific instruments and monitoring the spacecraft's health and status. It then consolidates this information into a single data package for transmission to Earth via the TMU. This data is encoded in binary form, comprising combinations of ones and zeros, which form the basis of all computer language.

In December, the telemetry modulation unit (TMU) started transmitting a recurring sequence of ones and zeros, indicating a potential "stuck" condition. After eliminating other potential causes, the Voyager team identified the flight data system (FDS) as the source of the problem. Later, attempts were made to reboot the FDS and restore it to its previous operational state, but unfortunately, the spacecraft continues to fail to transmit usable data, according to NASA. 

Challenging issues

Consulting original documents written decades ago by engineers who did not foresee present-day issues is often necessary to address challenges encountered by the probes. According to the space agency, this process requires considerable time for the team to grasp how a new command might impact the spacecraft's operations, thus preventing unintended consequences. 

Furthermore, increasing the challenge is that all commands dispatched from mission controllers on Earth require 22.5 hours to reach Voyager 1, which is currently exploring the outer reaches of our solar system, over 15 billion miles (24 billion kilometers) from Earth. Consequently, the engineering team must patiently wait 45 hours to receive a response from Voyager 1, enabling them to assess whether a command produced the desired outcome.

"This week, the team will send more commands to the spacecraft to gather information about the status of the onboard systems. In the coming weeks, the team expects to start making more aggressive attempts to reset various systems that might influence the FDS," said NASA engineers in a conversation with IFLScience . 

Voyager 2, the sibling of Voyager 1, was launched just 16 days after its counterpart and continues to function effectively. Managed and operated by NASA's Jet Propulsion Laboratory in Southern California, these probes are unique in their exploration of interstellar space—the expansive realm traversed by our Sun and its accompanying planets.

NASA engineers rally to save voyager 1, the icon of space exploration

NASA’s Voyager 1 spacecraft is talking nonsense. Its friends on Earth are worried

This artist's impression shows one of the Voyager spacecraft moving through the darkness of space.

This artist's impression shows one of the Voyager spacecraft moving through the darkness of space.

NASA/JPL-Caltech

The last time Stamatios "Tom" Krimigis saw the Voyager 1 space probe in person, it was the summer of 1977, just before it launched from Cape Canaveral, Florida.

Now Voyager 1 is over 15 billion miles away, beyond what many consider to be the edge of the solar system. Yet the on-board instrument Krimigis is in charge of is still going strong.

"I am the most surprised person in the world," says Krimigis — after all, the spacecraft's original mission to Jupiter and Saturn was only supposed to last about four years.

These days, though, he's also feeling another emotion when he thinks of Voyager 1.

"Frankly, I'm very worried," he says.

Ever since mid-November, the Voyager 1 spacecraft has been sending messages back to Earth that don't make any sense. It's as if the aging spacecraft has suffered some kind of stroke that's interfering with its ability to speak.

"It basically stopped talking to us in a coherent manner," says Suzanne Dodd of NASA's Jet Propulsion Laboratory, who has been the project manager for the Voyager interstellar mission since 2010. "It's a serious problem."

Instead of sending messages home in binary code, Voyager 1 is now just sending back alternating 1s and 0s. Dodd's team has tried the usual tricks to reset things — with no luck.

It looks like there's a problem with the onboard computer that takes data and packages it up to send back home. All of this computer technology is primitive compared to, say, the key fob that unlocks your car, says Dodd.

"The button you press to open the door of your car, that has more compute power than the Voyager spacecrafts do," she says. "It's remarkable that they keep flying, and that they've flown for 46-plus years."

Each of the Voyager probes carries an American flag and a copy of a golden record that can play greetings in many languages.

Each of the Voyager probes carries an American flag and a copy of a golden record that can play greetings in many languages.

Voyager 1 and its twin, Voyager 2, have outlasted many of those who designed and built them. So to try to fix Voyager 1's current woes, the dozen or so people on Dodd's team have had to pore over yellowed documents and old mimeographs.

"They're doing a lot of work to try and get into the heads of the original developers and figure out why they designed something the way they did and what we could possibly try that might give us some answers to what's going wrong with the spacecraft," says Dodd.

She says that they do have a list of possible fixes. As time goes on, they'll likely start sending commands to Voyager 1 that are more bold and risky.

"The things that we will do going forward are probably more challenging in the sense that you can't tell exactly if it's going to execute correctly — or if you're going to maybe do something you didn't want to do, inadvertently," says Dodd.

Linda Spilker , who serves as the Voyager mission's project scientist at NASA's Jet Propulsion Laboratory, says that when she comes to work she sees "all of these circuit diagrams up on the wall with sticky notes attached. And these people are just having a great time trying to troubleshoot, you know, the 60's and 70's technology."

"I'm cautiously optimistic," she says. "There's a lot of creativity there."

Still, this is a painstaking process that could take weeks, or even months. Voyager 1 is so distant, it takes almost a whole day for a signal to travel out there, and then a whole day for its response to return.

"We'll keep trying," says Dodd, "and it won't be quick."

In the meantime, Voyager's 1 discombobulation is a bummer for researchers like Stella Ocker , an astronomer with Caltech and the Carnegie Observatories

"We haven't been getting science data since this anomaly started," says Ocker, "and what that means is that we don't know what the environment that the spacecraft is traveling through looks like."

That interstellar environment isn't just empty darkness, she says. It contains stuff like gas, dust, and cosmic rays. Only the twin Voyager probes are far out enough to sample this cosmic stew.

"The science that I'm really interested in doing is actually only possible with Voyager 1," says Ocker, because Voyager 2 — despite being generally healthy for its advanced age — can't take the particular measurements she needs for her research.

Even if NASA's experts and consultants somehow come up with a miraculous plan that can get Voyager 1 back to normal, its time is running out.

The two Voyager probes are powered by plutonium, but that power system will eventually run out of juice. Mission managers have turned off heaters and taken other measures to conserve power and extend the Voyager probes' lifespan.

"My motto for a long time was 50 years or bust," says Krimigis with a laugh, "but we're sort of approaching that."

In a couple of years, the ebbing power supply will force managers to start turning off science instruments, one by one. The very last instrument might keep going until around 2030 or so.

When the power runs out and the probes are lifeless, Krimigis says both of these legendary space probes will basically become "space junk."

"It pains me to say that," he says. While Krimigis has participated in space missions to every planet, he says the Voyager program has a special place in his heart.

Spilker points out that each spacecraft will keep moving outward, carrying its copy of a golden record that has recorded greetings in many languages, along with the sounds of Earth.

"The science mission will end. But a part of Voyager and a part of us will continue on in the space between the stars," says Spilker, noting that the golden records "may even outlast humanity as we know it."

Krimigis, though, doubts that any alien will ever stumble across a Voyager probe and have a listen.

"Space is empty," he says, "and the probability of Voyager ever running into a planet is probably slim to none."

It will take about 40,000 years for Voyager 1 to approach another star; it will come within 1.7 light years of what NASA calls "an obscure star in the constellation Ursa Minor" — also known as the Little Dipper.

Knowing that the Voyager probes are running out of time, scientists have been drawing up plans for a new mission that, if funded and launched by NASA, would send another probe even farther out into the space between stars.

"If it happens, it would launch in the 2030s," says Ocker, "and it would reach twice as far as Voyager 1 in just 50 years."

Copyright 2024 NPR. To see more, visit https://www.npr.org.

OPB’s First Look newsletter

Streaming Now

Marketplace

  • Skip to main content
  • Keyboard shortcuts for audio player

After a 12.3-billion-mile 'shout,' NASA regains full contact with Voyager 2

Emily Olson

Ayana Archie

voyager 1 still transmitting

A NASA image of one of the twin Voyager space probes. The Jet Propulsion Laboratory lost contact with Voyager 2 on July 21 after mistakenly pointing its antenna 2 degrees away from Earth. On Friday, contact was fully restored. NASA/Getty Images hide caption

A NASA image of one of the twin Voyager space probes. The Jet Propulsion Laboratory lost contact with Voyager 2 on July 21 after mistakenly pointing its antenna 2 degrees away from Earth. On Friday, contact was fully restored.

Talk about a long-distance call.

NASA said it resumed full communications with the Voyager 2 on Friday after almost two weeks of silence from the interstellar spacecraft.

The agency's Jet Propulsion Laboratory said a series of ground antennas, part of the Deep Space Network, registered a carrier signal from Voyager 2 on Tuesday. However, the signal was too faint.

A Deep Space Network facility in Australia then sent "the equivalent of an interstellar 'shout' " to the Voyager 2 telling it to turn its antenna back toward Earth. The signal was sent more than 12.3 billion miles away and it took 37 hours to get a response from the spacecraft, NASA said.

Scientists received a response at about 12:30 a.m. ET Friday. Voyager 2 is now operating normally, returning science and telemetry data, and "remains on its expected trajectory," NASA said.

NASA said Friday that it lost contact with Voyager 2 on July 21 after "a series of planned commands" inadvertently caused the craft to turn its antenna 2 degrees away from the direction of its home planet.

NASA is keeping Voyager 2 going until at least 2026 by tapping into backup power

NASA is keeping Voyager 2 going until at least 2026 by tapping into backup power

What might seem like a slight error had big consequences: NASA previously said it wouldn't be able to communicate with the craft until October, when the satellite would go through one of its routine repositioning steps.

"That is a long time to wait, so we'll try sending up commands several times" before October, program manager Suzanne Dodd told The Associated Press.

These are the 4 astronauts who'll take a trip around the moon next year

These are the 4 astronauts who'll take a trip around the moon next year

Even if Voyager 2 had failed to reestablish communications until fall, the engineers expected it to stay moving on its planned trajectory on the edge of the solar system.

Voyager 2 entered interstellar space in November 2018 — more than 40 years since it launched from Cape Canaveral, Fla. To this day, Voyager 2 remains one of only two human-made objects to ever operate outside the heliosphere, which NASA defines as "the protective bubble of particles and magnetic fields generated by the Sun."

Its primary mission was to study the outer solar system, and already, Voyager 2 has proved its status as a planetary pioneer . Equipped with several imaging instruments, the spacecraft is credited with documenting the discovery of 16 new moons, six new rings and Neptune's "Great Dark Spot."

Voyager 2 Bids Adieu To The Heliosphere, Entering Interstellar Space

Voyager 2 Bids Adieu To The Heliosphere, Entering Interstellar Space

Voyager 2 is also carrying some precious cargo, like a message in a bottle, should it find itself as the subject of another world's discovery: a golden record containing a variety of natural sounds, greetings in 55 languages and a 90-minute selection of music.

Last month's command mix-up foreshadows the craft's inevitable end an estimated three years from now.

"Eventually, there will not be enough electricity to power even one instrument," reads a NASA page documenting the spacecraft's travels . "Then, Voyager 2 will silently continue its eternal journey among the stars."

Meanwhile, Voyager 2's sister spacecraft, Voyager 1, is still broadcasting and transmitting data just fine from a slightly farther vantage point of 15 billion miles away.

Correction Aug. 3, 2023

A previous version of this article implied that Voyager 2 flew past Uranus in 2018 when, in fact, the spacecraft concluded its encounter with the planet and started heading toward Neptune in 1986. Voyager 2 entered interstellar space in November 2018.

  • Jet Propulsion Laboratory

IMAGES

  1. 1977: Voyager 1 Probe Launched

    voyager 1 still transmitting

  2. Voyager 1 still sends data back to Earth, but not for long

    voyager 1 still transmitting

  3. Voyager 1

    voyager 1 still transmitting

  4. Voyager 1 still in our solar system: Nasa

    voyager 1 still transmitting

  5. Voyager 1 still in solar system… for now

    voyager 1 still transmitting

  6. NASA's Voyager 1 Probe is Transmitting Mysterious Signals Back to Earth

    voyager 1 still transmitting

VIDEO

  1. Voyager 1: Exploring the Unknowns of Our Solar System and Beyond

  2. NASA Reestablishes Contact with Voyager 2 After Losing Communication

  3. Nasa Warns Us That Voyager 1 Made An Encounter In Deep Space

  4. 6 MINUTES AGO: Voyager 1 Just Sent Out A TERRIFYING Message From Space

  5. Is Voyager 1 Dying!? #voyager1 #space #spacenews

  6. Voyager 1 Probe Is Started Sending Mysterious Data From Interstellar Space. @thecosmosnews

COMMENTS

  1. Voyager 1 still sends data back to Earth, but not for long

    The region that Voyager 1 is traversing is sparser still. And for the most part, it's quiet. But every few years, as Voyager 1 records more data about the plasma and dust out here, it finds ...

  2. NASA's interstellar Voyager 1 spacecraft isn't doing so well

    As of Feb. 6, NASA said the team remains working on bringing the spacecraft back to proper health. "Engineers are still working to resolve a data issue on Voyager 1," NASA's Jet Propulsion ...

  3. Voyager

    Instrument Status. This is a real-time indicator of Voyagers' distance from Earth in astronomical units (AU) and either miles (mi) or kilometers (km). Note: Because Earth moves around the sun faster than Voyager 1 is speeding away from the inner solar system, the distance between Earth and the spacecraft actually decreases at certain times of year.

  4. Voyager 1 Is Returning a Mishmash of 1s And 0s From ...

    Voyager 1, the most distant human-made object from Earth, is sending back a repetitive jumble of 1s and 0s that don't make any sense. Scientists at NASA are desperately trying to fix the glitch from 24 billion kilometers (15 billion miles) away. The probe can still receive commands from Earth but messages to interstellar space require ...

  5. Voyager 1 stops communicating with Earth

    NASA's Voyager 1 spacecraft has experienced a computer glitch that's causing a bit of a communication breakdown between the 46-year-old probe and its mission team on Earth. Engineers are ...

  6. NASA's Voyager spacecraft: When will we receive the final transmission

    Voyager 1 and Voyager 2, both launched in 1977, were built to last five years. ... depending on how much power the spacecraft still have to transmit a signal back to Earth," NASA explained. ...

  7. Voyager

    Voyager 1 is the furthest away but is still within the region dominated by the Sun and its solar wind and is still considered to be within the solar system. Both spacecraft have, however, passed the farthest known planets within our solar system - when Voyager 2 passed Neptune in 1989. ... There is a sphere of radio transmission about thirty ...

  8. Record-Breaking Voyager Spacecraft Begin to Power Down

    Sagan urged NASA officials to have Voyager 1 transmit one last series of images. So, on Valentine's Day in 1990, the probe aimed its cameras back toward the inner solar system and took 60 final shots.

  9. Voyager 1 mystery: Sending random data

    The 45-year-old probe has been a model of endurance, continuing to send back data using decades-old technology. But on May 18, 2022, NASA announced that Voyager 1 has been sending back mysterious ...

  10. Engineers Investigating NASA's Voyager 1 Telemetry Data

    The engineering team with NASA's Voyager 1 spacecraft is trying to solve a mystery: The interstellar explorer is operating normally, receiving and executing commands from Earth, along with gathering and returning science data. But readouts from the probe's attitude articulation and control system (AACS) don't reflect what's actually happening onboard.

  11. NASA is trying to fix Voyager 1, but the old spacecraft's days are

    Voyager 1 has been traveling through space since 1977, and some scientists hoped it could keep sending back science data for 50 years. But a serious glitch has put that milestone in jeopardy.

  12. NASA's Voyager 1 Is Glitching, Sending Nonsense From Interstellar Space

    NASA's Voyager 1 Is Glitching, Sending Nonsense From Interstellar Space. The aging spacecraft, launched in 1977, is transmitting a gibberish pattern of ones and zeros back to Earth

  13. Voyager 1

    Use of the TCM thrusters allowed Voyager 1 to continue to transmit data to NASA for two to three more years. ... As of 2018, New Horizons is traveling at about 14 km/s (8.7 mi/s), 3 km/s (1.9 mi/s) slower than Voyager 1 and is still slowing down. Voyager 1 is expected to reach the theorized Oort cloud in about 300 years and take ...

  14. Mystery issue experienced on NASA's Voyager 1 probe from 1977

    The Voyager 1 probe is still exploring interstellar space 45 years after launching, but it has encountered an issue that mystifies the spacecraft's team on Earth. Voyager 1 continues to operate ...

  15. NASA solves Voyager 1 data glitch mystery, but finds another

    It was a low-risk fix, but time consuming. It takes a radio signal nearly 22 hours to reach Voyager 1, which was 14.6 billion miles (23.5 billion kilometers) from Earth and growing farther by the ...

  16. How do the Voyager spacecraft transmit radio signals so far

    Voyager 1 is currently over 7 billion miles (about 11 billion kilometers) away from Earth and is still transmitting -- it takes about 10 hours for the signal to travel from the spacecraft to Earth! The Voyager spacecraft use 23-watt radios. This is higher than the 3 watts a typical cell phone uses, but in the grand scheme of things it is still ...

  17. NASA gets Voyager 1 talking again

    Voyager 1 has yielded revelations about our Solar System no one could have predicted. Currently, Voyager 1 is more than 23.4 billion kilometers or 14.6 billion miles (and gaining, most of the time ...

  18. NASA has solved the mystery of Voyager 1's strange data ...

    Image: NASA. As NASA wrestles with Artemis 1's engine woes that are delaying the return to human exploration of the moon, the agency has solved another mystery, one causing its 45-year-old ...

  19. NASA is investigating this 'mystery' data coming from Voyager 1

    Forty-five years after launching, the Voyager 1 is still transmitting data to scientists on Earth, but there's a mystery issue corrupting the data. Written by Liam Tung, Contributing Writer May 19 ...

  20. NASA's Voyager 1 probe in interstellar space can't phone home (again

    NASA's Voyager 1 probe is currently unable to transmit any scientific or systems data back to Earth. The 46-year-old spacecraft is capable of receiving commands, but a problem seems to have arisen ...

  21. NASA engineers rally to save voyager 1, the icon of space exploration

    The team is tackling an issue with one of Voyager 1's onboard computers, the flight data system, which is stopping it from transmitting data. ... "Sad and frustrated to have the spacecraft still ...

  22. Voyager 1 suffers glitch keeping it from transmitting data

    Currently 15 billion miles (24 billion km) from Earth, Voyager 1's still collecting scientific data as it hurtles out of the solar system on a one-way journey into interstellar space.

  23. NASA Finally Contacts Voyager 2 After Unprecedented Seven ...

    Voyager 1 has overtaken all other spacecrafts and is now the most distant: 22 billion km away, pulling away from the slightly slower Voyager 2 at "only" 18.8 billion km distant. Since the ...

  24. NASA's Voyager 1 spacecraft is talking nonsense. Its friends on Earth

    Now Voyager 1 is over 15 billion miles away, beyond what many consider to be the edge of the solar system. Yet the on-board instrument Krimigis is in charge of is still going strong.

  25. NASA says it has resumed full contact with its Voyager 2 spacecraft

    Meanwhile, Voyager 2's sister spacecraft, Voyager 1, is still broadcasting and transmitting data just fine from a slightly farther vantage point of 15 billion miles away. Correction Aug. 3, 2023

  26. Voyager 1 Communication Anomalies 15 Billion Miles Away Puzzle NASA

    Voyager 1, launched in 1977, had an amazing space voyage exploring the outer regions of our solar system. Mission management has extended the life of the spacecraft by turning off heaters and ...